
Higher-Dimensional Category Theory

The architecture of mathematics

Eugenia Cheng

November 2000

The history of maths shows that its greatest contribu-

tion to science, culture and technology has been in terms

of expressive power, to give a language for intuitions

which enables exact description, calculation, deduction.

|Ronald Brown

to `Categories' e-mailing list, 21st June 2000



Contents

Foreword 2

Introduction 3

1 Foundations 5

1.1 Theory: What is mathematics? . . . . . . . . . . . . . . . . . 5

1.2 Category Theory: The mathematics of mathematics . . . . . . 7

1.3 Dimensions in Category Theory: Layers of complication . . . . 9

1.4 Higher Dimensional Category Theory: Minimal rules for max-

imal expression . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Completed research 12

2.1 The `opetopic' de�nition of n-category . . . . . . . . . . . . . 13

2.2 Building blocks: opetopes . . . . . . . . . . . . . . . . . . . . 14

2.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The future: up and along 19

3.1 `Up' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 `Along' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References 22

1



Foreword

Most people are so frightened of the name of mathemat-

ics that they are ready, quite una�ectedly, to exaggerate

their own mathematical stupidity.

|G.H.Hardy

A Mathematician's Apology

It would be absurd to suggest that the learning of German grammar

had much to do with research on, say, the work of Schopenhauer. However,

analogous such assumptions abound regarding mathematics, if only because

it is so hard to discuss mathematical research without using obscure technical

language.

For this reason, I will frequently attempt to give, not a precise account of

my research, but an impressionistic idea of it. Impressionism may not stand

up to rigorous analysis, but it carries with it a di�erent sort of clarity. Its

apparently hazy interpretations of subject material evoke rather than repre-

sent; evocative images reach a wider audience more directly than accounts

requiring a specialist interpreter to mediate.

In place of hazy brushstrokes, I will use analogies to create those evocative

images. An analogy is, by de�nition, not an actual description, so is bound

to be limited in scope. However, I hope that the analogies will help to give

a sense of what my research is, by comparing the very abstract notions to

much more universally appealing ones.
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Introduction

Before constructing a new building, the site must �rst

be cleared of pre-existing material, and then the foun-

dations must be laid. Only then can the building itself

begin to emerge.

Category Theory is the mathematics of mathematics.

In order to understand this bold statement it is evidently necessary (twice

over) to understand what mathematics is. By this `understanding' I do not

mean a working knowledge of advanced mathematics. I have no intention

of providing a `crash course' in advanced algebra in order to describe my

research; this would be no more interesting to the reader than a dictionary

preceding a paper in Esperanto.

Category Theory is the study and formalisation of the way mathematics

`works', or the essence of mathematics, so it is this essence that I will �rst try

to describe. I will then explain how Category Theory studies this essence.

Then as a �nal preliminary, I will introduce the idea of dimensions in

category theory. I stress that these are not physical dimensions, but rather,

conceptual ones, or layers of complication.

Only when all these foundations are in place will it be possible for me

to start describing my research. The �eld of Higher-Dimensional Category

Theory is young within Category Theory, since of course, the `low' dimensions
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had to be examined �rst. The `high' dimensions are not fully understood;

various attempts have been made, but the relationship between them has

been unclear. Broadly speaking, my work has focused on the huge task of

unifying the di�erent theories.

However, even before doing any of the above, I must clear the psycho-

logical site of possibly counterproductive notions of mathematics, that is,

explain what mathematics is not. Mathematics is not `the study of num-

bers'. I urge the reader not to be distracted by thoughts of arduous maths

lessons at school, lengthy calculations culminating in the wrong answer, or

endless memory-defying formulae. This is merely the grammar; it is not

necessary to understand grammatical intricacies to appreciate poetry.
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Chapter 1

Foundations

1.1 Theory: What is mathematics?

A mathematician, like a painter or a poet, is a maker of

forms.

|G.H.Hardy

A Mathematician's Apology

Mathematics is the rigorous study of conceptual systems. It may be seen

as having two general roles:

1. To provide a language for making precise statements about concepts,

and a system for making clear arguments about them.

2. To idealise concepts so that a diverse range of notions may be com-

pared and studied simultaneously by focusing only on relevant features

common to all of them.

Mathematics as a language has developed with a general aim of eliminat-

ing ambiguity. What has been sacri�ced in pursuit of this ideal?
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The most obvious sacri�ce is that of scope. Rigour cannot be imposed

upon every element of human consciousness. (Indeed, it may be precisely

this impossibility that makes the human consciousness so endlessly rich.) In

order to maintain rigour, we must be carefully precise about the issues we

are considering, and the context in which we are considering them.

A conceptual system is a system involving only ideas rather than physical

phenomena. Physical systems pre-existing in the physical world around us

already have properties which we can only observe and therefore not con-

trol. Scienti�c experiments seek to isolate parts of physical systems in order

better to study their properties; a conceptual system might be seen as the

purest form of such isolation. It is not only objects that are isolated, but

characteristics of those objects.

Generally, we study such a system by de�ning the components we desire

as our `building blocks', together with any rules we require them to satisfy.

Examples

1. Building blocks: a=b where a and b are whole numbers and b is not 0

Rules: a=b = c=d if ad = bc

System: fractions (rational numbers)

2. Building blocks: whole numbers

Rules: 1 + 1 = 0

System: Binary numbers

3. Building blocks: bricks

Rules: bricks may be placed on top of one another or end to end

System: brick walls
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4. Building blocks: people

Rules: the College rules

System: Gonville and Caius College

Whether we have created or discovered a system is a moot philosophical

point. Inasmuch as mathematics is the study of conceptual systems, we

have `created' a way of describing and thereby studying such a system, even

though, perhaps, we have not created the system itself.

A small community may rely on the common sense of its inhabitants to

preserve order. However, as the community grows it may become helpful or

indeed necessary to organise the unspoken rules into a formal system of law.

The system should re
ect the `common sense' behaviour of the inhabitants;

the fact that it has been written down should a�ect their daily lives very

little.

Likewise, formalising a system into mathematical terms helps to keep

order as the system becomes more complex. A mathematical system provides

a framework for enquiry and argument when `common sense' has been pushed

to its limits; it does not otherwise interfere.

1.2 Category Theory: The mathematics of

mathematics

It is not worth using an advanced classi�cation system

for a shelf of twenty books, but for a well-stocked library

it is imperative.

I have asserted that mathematics is the rigorous study of conceptual

systems, and that category theory is the mathematics of mathematics. So
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category theory is the rigorous study of a conceptual system, where the

system in question is mathematics itself.

Thus category theory may be seen as having two general roles:

1. To provide a language for making precise statements about mathemat-

ical concepts, and a system for making clear arguments about them.

2. To idealise mathematical concepts so that a diverse range of mathemat-

ical notions may be compared and studied simultaneously by focusing

only on relevant features common to all of them.

I have already suggested that, to maintain rigour in a study, it is impor-

tant to be precise about the context in which the issues are being considered.

This is one of the principal considerations of category theory.

In everyday language, a category is some principle for grouping objects

together and perhaps comparing them. It is diÆcult to compare objects

without a context, or some criteria for making comparison. For example, a

competition might be divided into categories, each having di�erent criteria

for judging entrants.

Likewise in mathematics, it is not enough to know which objects we are

considering; we must also specify the context in which we are relating these

objects. Is a bicycle better than an egg? In the category `transport', a bicycle

is clearly better, but certainly not in the category `food'.

A category, then, is a collection of objects together with some ways of

relating them to each other.
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1.3 Dimensions in Category Theory: Layers

of complication

If an unknown animal is discovered, a theory of the un-

known creature must be set up. It is clear that this the-

ory is not itself an animal. However, if a mathematical

concept is discovered, the theory of the new concept will

itself be a new mathematical concept, itself requiring a

theory : : :

A category is a collection of objects together with some relationships

between them. These relationships may also be regarded as objects and so

might also have relationships between them. These relationships might also

have relationships between them, which might have relationships between

them : : :

Each of these levels of `relationships' is what is called a dimension in

category theory. A basic category has only one level of `relationship'; it is

a 1-dimensional category. If we allow relationships between relationships,

we have a 2-dimensional category, or simply 2-category. Similarly we have

3-categories, 4-categories and so on; so we may have n-categories, where n is

any whole number.

1.4 Higher Dimensional Category Theory: Min-

imal rules for maximal expression

A community without rules risks descending into chaos

and disorder. But a strict regime suppresses expression

and creativity.
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`Higher' is a comparative term, so begs the question: higher than what?

In this case, it means roughly `higher than what is easily de�ned'. What

then are the diÆculties in de�ning an n-category? The diÆculty is in the

rules.

Recall that a conceptual system is set up with two components: building

blocks and rules. Higher dimensional category theory is no exception. An

n-category has

� objects: called 0-cells

� relationships between objects: called 1-cells

� relationships between relationships between objects: called 2-cells

� relationships between relationships between relationships between ob-

jects: called 3-cells

: : : (all the above being building blocks)

� rules

The diÆculty is that, just as relationships may have relationships, so

rules may also satisfy rules. Rules for rules may also satisfy rules, and these

themselves may satisfy more rules, and so on.

With insuÆcient rules, chaos would prevail, and the structure would be

of little use. At the other extreme, it is easy to impose very strict rules,

resulting in a highly disciplined and regimented system. So-called `strict

n-categories' are well understood.

However, such a strict regime does not allow the language to ful�ll its

expressive potential. So we need to �nd `minimal rules for maximal expres-

sion'.
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The diÆculty is that as the number of dimensions increases, the complex-

ity of the necessary rules increases with fearsome rapidity. For 1 dimension,

the rules may be written down on one line, and those for 2 dimensions may

be expressed in diagrams occupying a page or so. For 4 dimensions the dia-

grams are already so large that they will not �t in any sensibly-sized book,

and as such are unpublishable. The thought of writing down the rules for

a 5-category would make most category theorists shudder, let alone for a

10-category or a 4-million-category.

Clearly, some other way of approaching the theory is required.

This is the great unsolved problem in higher-dimensional category theory:

to make a general description of an n-category. Various di�erent descriptions

have been proposed by various category theorists with di�erent aims and

ideals. Di�erent theories have been set up with di�erent emphases, just as

di�erent languages have evolved to re
ect di�erent sensibilities. We need

to be able to relate these theories to one another, like translating from one

language into another.
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Chapter 2

Completed research

The relationship between di�erent approaches

to higher-dimensional category theory.

There is an unmapped mountain. Various mountaineers

claim to have reached the summit; each has returned with

a map of his own route, and wondrous tales of the view

from the top. To map the whole mountain we must at

least see how the di�erent routes relate to one another.

Did all the mountaineers really reach the top? In fact,

were they even climbing the same mountain?

The problem of de�ning an n-category has been approached in various

di�erent ways, but the relationship between the di�erent approaches has

not been fully understood. In many cases, one mathematician's attempt to

understand an earlier de�nition has only resulted in his producing a new

de�nition of his own. While it may be helpful to see many di�erent facets of

the same structure, such knowledge has only limited use if we do not know

how the facets �t together.
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Overview of my research to date

In 1997 John Baez and James Dolan proposed a de�nition of n-category

([BD]), called `opetopic'. Hermida, Makkai and Power attempted to un-

derstand it but, unable to do so, they attempted a de�nition of their own

([HMP]). Tom Leinster then attempted to understand the relationship be-

tween these approaches but, unable to do so, attempted yet another de�ni-

tion ([Lei]). Each de�nition had similar structure but used di�erent `building

blocks'.

In the �rst phase of my research ([Che1]) I succeed in providing a math-

ematical equivalence between the �rst two theories; in the second phase

([Che2]) I provide an equivalence between all three. (The notion of equiva-

lence here has a highly rigorous mathematical de�nition.)

The third phase of my research involves proving that the proposed theory

does not contradict the `evidence' available. The notion of n-category is

certainly understood when n is 0, 1, or 2; this is referred to as `classical'

theory. So for a theory of n-categories to be at all plausible, it must at least

give the correct structures for these values of n. In ([Che3]) I prove that

the opetopic theory is indeed equivalent to the classical theory for these low

values of n.

2.1 The `opetopic' de�nition of n-category

We have seen that a conceptual system is set up with two components: build-

ing blocks and rules. Then an n-category has

� Building blocks: 0-cells, 1-cells, 2-cells, 3-cells, : : :

� Rules: rules for an n-category
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The important thing to remember here is that n is an arbitrary number.

We cannot simply write down the de�nition explicitly, because we do not

know what that number is. So we need a general theory that will work for

all numbers.

The de�nition proceeds as follows. First, a language for describing the

cells is set up. Then, the rules are dealt with. So any comparison of the

de�nitions must also proceed in these two stages. The language for describing

the cells is the theory of opetopes.

2.2 Building blocks: opetopes

Like bricks, the building blocks in this theory, that is the cells, must be of

certain `shapes'. An opetope (pronounced `op-e-tope') is the proposed shape

for a cell in this theory. Figure 2.1 shows some examples of typical opetopes

in low dimensions.

The structures become rapidly complicated as the dimensions increase.

The �rst problem, then, is to develop a convenient language for describing

these objects, since drawing them is too impractical.

We may observe from the examples that a 2-dimensional opetope looks

like a string of 1-dimensional opetopes `stuck together' (ignoring arrowheads);

similarly a 3-opetope looks like some 2-opetopes stuck together; a 4-opetope

looks like some 3-opetopes stuck together, and so on. So we might simplify

a 3-opetope, for example, by simply listing the 2-opetopes from which it was

made, together with some sort of description of how they were stuck together.
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Figure 2.1: Some typical opetopes of dimensions 0, 1, 2 and 3

For example, labelling a 3-dimensional opetope as shown below:
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we might then represent it as follows:

a; b; c �! d:

This raises an immediate question: in what order should the components

be listed? In the above case, we could equally have written

b; a; c �! d

or

c; a; b �! d;

to give just two of the alternatives.
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Di�erences between the de�nitions

If we tidy up the papers on a desk, we force them into

one pile even though they had natural positions strewn

as they were. However, in a pile, they are easier to carry

about.

It is somehow unnatural to try to force the components of an opetope

into an orderly straight line when they have natural positions as they are;

however, it would in many ways be much more practical to write them down

in this way. But the problem is: in what order should they be listed?

The three di�erent theories arise, essentially, from three di�erent ways

of tackling this issue. Baez and Dolan propose listing them in every order

possible, giving one description for each ordering. Hermida, Makkai and

Power propose picking one order at random. Leinster proposes not picking

any order, but uses a much more complicated way of describing the picture

without having to list the components at all.

The `di�erences' are not di�erences

If we place an object in front of a mirror, we can see

another image of the object, but we have not changed

the object itself.

In fact, the Baez/Dolan approach as they present it is not equivalent to

the other approaches. This is because they overlook an important matter in

their scheme: if we are to have one description of a cell for every possible

way of listing its components, we have many description of the same object,

but we have not changed the object itself. Fatally, they disregard, or `throw

away' the fact that these are images of the same object, and so a huge number
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of extra objects seem to have appeared from nowhere. But, like re
ections

in a mirror, they are not really there.

My �rst task was therefore to modify their theory to preserve the impor-

tant facts they had abandoned. Once this was done, I was able to prove that

the three di�erent theories were in fact mathematically equivalent.

2.3 Rules

Every lock has a key that �ts it best.

The next step was then to consider the `rules' for the system. Since Baez

and Dolan had set up their rules with a crucial oversight in their building

blocks, the �rst problem was to modify the rules to take into account the

modi�ed building blocks. Only then could comparisons proceed.

The idea is that an n-category has `spaces' where cells can be. The rules

are stated in the form `every space for a cell has a cell that �ts best'. Compare

this with `every parking space has a car that �ts in it best' or `every lock

has a key that �ts it best'. The �rst statement is dubious, but the second is

plausible.

Hermida/Makkai/Power and Leinster did not complete their de�nitions

to include the rules, so the next step was to compare the modi�ed Baez/Dolan

de�nition with the so-called `classical theory', that is, the well-understood

low-dimensional cases. Baez and Dolan themselves checked their de�nition

for n = 1 but did not attempt a comparison for n = 2. Perhaps this is not

surprising since, without my modi�cation to their theory, such a comparison

was impossible.
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Di�erences between the de�nitions

Prince Charming knows that someone's foot �ts the glass

slipper, but this is not enough for him: he must �nd her.

The most notable di�erence between the opetopic and classical theories

is that in the classical theory one particular `best cell' is actually speci�ed for

each space; in the opetopic theory the best cells are simply known to exist.

The problem is that there may be more than one possible `best cell', just as

there may be several copies of a key. To compare the theories, which of the

possible `best cells' are we to choose? What would Prince Charming have

done if two people's feet had �tted the glass slipper?

The `di�erences' are not di�erences

If we are given a bunch of identical keys to a door, we

can choose any of them to unlock the door. It does not

matter which one we choose, and the act of choosing

does not change the bunch of keys in our hands.

In my most recent work, I prove that the opetopic and classical approaches

are equivalent for n = 2, despite the issues discussed above. This equivalence

is somewhat surprising, as questions of choice usually complicate matters a

great deal.

However, I show that, even if there is a chosen best cell for a space, it

makes no di�erence, as long as we can still work out what the other candidates

for selection could have been.
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Chapter 3

The future: up and along

As I progress towards the summit of the mountain I must

at each stage decide whether to proceed straight up the

face or to edge my way further around.

There are two general directions in which I propose to continue my re-

search.

3.1 `Up'

The opetopic theory of n-categories is still only partly complete, although

the de�nition of an n-category itself is in place. At low dimensions, there is

the possibility of one more level of comparison with the classical theory: the

`classical' theory of 3-categories is well-established, albeit not as well-known

as that of 2-categories. This is the next issue begging to be addressed.

Remaining, for the time being, in low dimensions, I might then examine

other aspects of the classical theory with a view to `translating' them into

the opetopic world. In particular, the so-called `coherence theorems', which
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formalise the crucial assertion `this theory is sensible'. Coherence for 2-

dimensions is easy to state and relatively straightforward to prove. As is to

be expected, coherence for 3-dimensions is much more complex; for higher

dimensions we should expect very complex notions indeed. It would therefore

be of great value to be able to understand the coherence issue in a general

n-dimensional setting, without having to consider each dimension separately.

The opetopic theory is potentially such a setting.

As for the higher dimensions, there remains the important idea that the

collection of n-categories should itself form an (n+1)-category. Certainly, the

collection of 1-categories forms a 2-category, and the collection of 2-categories

forms a 3-category. The reasons for this are suÆciently clear that the need

for a generalisation to n is indisputable. It is therefore of utmost importance

that this matter be resolved in order for any theory of n-categories to be at

all satisfactory. In the opetopic theory, this still remains to be done.

3.2 `Along'

There are now approximately ten theories of n-categories proposed in the lit-

erature, although some are spin-o�s of others. It is crucial that these theories

be compared, and yet the process of comparison is not, to my knowledge,

being systematically undertaken. It is possible that many mathematicians

in the �eld are too well versed in one particular approach to be able fully

and objectively to consider any other. Whatever the case, I propose to ex-

amine each of these de�nitions and, one by one, compare them with the

theories already uni�ed. My eventual aim is to present a complete theory of

n-categories which is more than just the sum total of all proposals to date; as
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in the low-dimensional cases, it should actually cover all the possible theories

that could ever be proposed.

It is not enough to climb the mountain; we must map

the mountain, so that others may ascend and admire

the breathtaking view themselves.
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