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- Categories, functors and natural transformations

Categories
DEFINITION 1.1.1
A category C consists of:

+ a collection of objects, ob C;
+ For every pair X, Y € ob €, a collection C(X, Y) = Home(X, Y) of morphisms f: X — Y,

equipped with:

+ for each X € ob C, an identity map idx = 1x € C(X, X);
» foreach X, Y, Z € ob C, a composition map

mxyz: C(Y, Z) X C(X, Y) — C(X, 2)
&f)—gof=¢gf
satisfying:
- unitlaws —if f: X — Ythenlyo f=f= folyx
- associativity — if X Ly&zh W, then h(gf) = (hg)f.
A category is said to be small if ob € and all of the C(X, Y) are sets, and locally small if each
C(X,Y)is a set.

REMARKS

1 If f € C(X, Y), we say that X and Y are the domain (or source) and the codomain (or target)
of f.

2 Morphisms are also referred to as maps or arrows.

3 We can write Home for the collection of all morphisms.

4 It is convenient and customary to assume that the C(X, Y) are disjoint for distinct pairs
X, Y).

5 We don’t worry ourselves with the niceties of set theory.

DEFINITION 1.1.2
A category C is called discrete if the only morphisms are identities; i.e.

{1x} ifX=Y
%) otherwise.

CXY) = {

EXAMPLES 1.1.3
1 Large categories of mathematical structures:

a Set of sets and functions.
b Categories derived from or related to Set:
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« Pfn of sets and partial functions;
+ Rel of sets and relations;
« Set, of pointed sets and base point preserving functions.

¢ Algebraic structures and structure-preserving maps:

« Grp of groups and group homomorphisms;

Ab of abelian groups and group homomorphisms;
« Ring of rings and ring homomorphisms;

+ Vec of vector spaces over R;

+ Mat of natural numbers and n X m matrices.

d Topological categories:

« Top of topological spaces and continuous maps;

+ Haus of Hausdorff spaces and continuous maps;

+ Met of metric spaces and uniformly continuous maps;

« Htpy of topological spaces and homotopy classes of maps.

2 Mathematical structures as categories:

a Posets: a poset (P, <) can be regarded as a category C with objects the elements of P and
precisely one morphism x — y when x < y and none otherwise.

b Monoids: a category with just one object is a monoid.

¢ Groups: a group G can be regarded as a category with just one (formal) object and
whose morphisms are the elements of G.

3 Small categories can be presented by generators and relations. From a directed graph we
can generate a category of “paths through the graph” and then add relations imposing
equalities between some paths with the same domain and codomain.

a There is a category o with no objects and no morphisms, generated by the empty graph.

b There is a category 1 with one objects and one (identity) morphism, generated by the
graph with just one vertex.

¢ There is a category generated by the graph with one vertex and one edge. It is isomor-
phic to the additive monoid N.

d There is a category generated by the graph with one vertex and one edge s say, together
with the relation s*> = 1. It has one object and two morphisms and is isomorphic to the
cyclic group of order 2.

e There is a category generated by the graph with two vertices and one edge between
them. It has two objects and three morphisms and is isomorphic to the poset 2 = {0 <

1}.
Universal properties
DEFINITION 1.2.1

A morphism f € C(X, Y)is an isomorphism if 3¢ € C(Y, X) such that gf = 1xand fg = 1y.
We say gis an inverse for f.

PROPOSITION 1.2.2
If ¢ and g, are inverses for f, then g; = g.

PROOF

g=goly=go(fogp)=@oflogx=1xogn =g. U



PROPOSITION 1.2.3

1 The identity map is an isomorphism.
2 The composition of two isomorphisms is an isomorphism.

PROOF

1 ly is clearly self-inverse.

2 Let f € C(Y, Z), g € C(X, Y) be isomorphisms, with respective inverses h € C(Z, Y), k €
C(Y, X). Then we claim that fg € C(X, Z) is an isomorphism, with inverse kh € C(Z, X).
For

(fo)(kh) = f(ghh = f(1)h = fh =1,
(kh)(fg) = k(hf)g = k(ly)g = kg = 1x
so we have the desired result. O
DEFINITION 1.2.4
A terminal object in C is an element T € ob € such that VX € C, 3! morphism X L
EXAMPLE
In Set, every 1-element set is terminal. So sometimes we denote a terminal object by 1.
PROPOSITION 1.2.5
Suppose 1 and 1’ are terminal in €. Then there exists a unique isomorphism f € C(1, 1).
PROOF

Since 1’ is terminal, there is a unique morphism f: 1 — 1’. Similarly, 1 is terminal, so
there is a unique morphism f": 1’ — 1. Now consider f' o f € C(1, 1). Since 1 is terminal,
there is a unique morphism 1 — 1, i.e. the identity. So f' o f = id;; similarly f o f' = idy.
Hence f is the desired unique isomorphism. O

DEFINITION 1.2.6

Given A, B € ob €, a product of A and B is an object A X B equipped with projections

A X B

A B,

such thatforall f: C — A, g: C — B, 3! morphism (f, g): C — A XxBsuchthatpo(f, g) =
fandgo (f,g) = g ie. such that

C
f 2N
A X B
LN
commutes.
EXAMPLE

InSet,A X B={(a,b) | a € A, b € B} with p, g the first and second projections.



Note however, that we could also have taken p, g to be the second and first projections, or
thesettobe{(b,a) | b€ B,ac A}

PROPOSITION 1.2.7

If
D D

P q P q
and
LN LN
are products of A, B € C, then 3! isomorphism k: D — D’ such that g’k = g and p'k = p.

PROOF

Consider the diagrams

D D’
p lk a r lkl q
D D
SNy LA
A B A B.
By our definition of product, k is the unique morphism D — D’ s.t. these diagrams com-
mute; so g’k = g and p’k = p certainly.

We claim that k’ is an inverse for k. For consider ko k': D' — D’. We have
pokoky=@p ok)ok =pok =p
q/o(kok/):(q/ok)okl:qoklzq/

Hence

commutes. But by the definition of product, there is a unique morphism D’ — D’ that
makes this diagram commute, i.e. the identity. So k o k' = idpy. Similarly k' o k = idp. So
k is indeed an isomorphism, and is the unique one s.t. g’k = g and p’k = p. 0

DEFINITION 1.2.8
If VA, B € C, there exists a product A X B, we say € has all binary products.
PROPOSITION 1.2.9

If C is a category with binary products, then given f € C(A, C), g € C(B, D), there exists a
unique morphism f X g € C(A x B, C X D) such that



S
X
o}

S
Xe——

-
o
e/c

commutes.
PROOF

Immediate from definition of product.

DEFINITION 1.2.10

O
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Suppose € is a category with binary products. Given B,C € obC, a function space or
exponential is an object C® equipped with an evaluation morphism e: C® x B — C such

that Vf: A x B— C,3! f: A — CP such that

f

AXB———C

N A

Cp X B

commutes, i.e. € 0 (f X 1) = f.

In Set, C® = { f: B— C} = [B, C]. There is an evaluation map

e CPxB—C
(& b) — g(b).

Given f: A X B— C, fixa € A to get

fa:B—C
b— f(a,b).

So we have a function
f:A—CP
a fa
such that

fa,b) = fa(b)
= &(fa b)

=¢o0 (]_‘ X 15)(a, b).

Soeo (f x 1) = f as required.
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Categorical constructions
DEFINITION 1.3.1

A subcategory D of C consists of subcollections

« obD Cob(
» Homp C Homeg,

together with composition and identities inherited from C. We say D is a full subcategory
of Cif VX, Y € D, DX, Y) = C(X, Y), and a lluf subcategory of C if ob C = ob D.
We can think of the data for a category as

C1

Home  [obC
(%]

We could have ¢; giving us the domain of a morphism and ¢, the codomain, or vice verse.
This motivates the definition:

DEFINITION 1.3.2
Given a category C, the dual or opposite category CP is defined by:-

« obC = ob C°p;
CX, Y) = CP(Y, X);
identities inherited;

f® o g? = (go .

3

3

3

THE PRINCIPLE OF DUALITY

Given any property, feature or theorem in terms of diagrams of morphisms, we can immedi-
ately obtain its dual by reversing all the arrows (this is often indicated by the prefix “co-”).

EXAMPLES 1.3.3

1 The dual notion of a terminal category object is an initial object. That is, an object I € C
such that for all Y € C, there exists a unique f: I — Y. For example, the (unique) initial
object in Set is &; we sometimes write 0 for an initial object.

2 The dual of a product is a coproduct:
AIlB

P q
e

where p, q are coprojections such that, for any f € C(4,C), g€ €(B,C), ' h: AIB — C
such that

B

C
f Th g
AIIlB

N

A B
commutes.
DEFINITION 1.3.4

A morphism A = B is monic iff given any f, g: C — A, we have mf = mg = f = g.
Dually, a morphism A — B is epic iff given any f, g: B — C, we have fe=ge = f = g.



It is easy to see that any isomorphism is epic and monic. In Set, a morphism is monic iff it is
injective, and epic iff it is surjective.

DEFINITION 1.3.5
Given C a category and X € ob C, then the slice over X, €/X is the category with:

« objects (Y, f), where f: Y — X € C;
+ morphisms h: (Y3, f1) — (Y2, f2) such that

commutes, i.e. f,h = fi.
Dually, we have the slice under X, X/C, with:

+ objects (Y, f), where f: X — Y € C;
+ morphisms h: (Y3, f1) — (Y2, f2) such that

commutes, i.e. hf; = f,.

We have a terminal object (X, 1x) in C /X and dually an initial object (X, 1x) in X/€.

1.4 - Functors
DEFINITION 1.4.1
Let C and D be categories. A functor F: € — D associates

+ with each X € ob C, an object FX € ob D;
+ with each f € C(X, Y), a morphism Ff € D(FX, FY),

such that

o Flx = 1px;

« F(gf) = Fgo Ff.
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DEFINITION 1.4.2
We define the category Cat of small categories:-
« For any category C there is an identity functor

le: € — €
X— X

f=f



+ Composition of functors C L, D & & with GF defined in the obvious way.
Similarly we have CAT, the category of large categories and functors.

EXAMPLES 1.4.3

1 Cat has an initial object 0.

2 Cat has a terminal object 1.
3 Cat has products; given C, D € ob Cat, we have the product € x D with

+ objects (¢, d),c € C,d € D;
+ morphisms (f, g), f:c— €C,g:d— d' € D.

DEFINITION 1.4.4
A functor F: € — D is faithful/full/full and faithful if C(X, Y) — D(FX, FY) is injective/
surjective/an isomorphism.

EXAMPLES 1.4.5

1 Functors between collections of mathematical objects:

a forgetful functors:
Gp — Set
Ring — Set
Ring — Ab

Haus — Top;

b free functors:
Set — Gp
Set — Mnd;

¢ inclusion of subcategories:
Ab — Gp
Haus — Top.

2 Functors between mathematical structures:
a posets f: (P, <) — (Q, <) is an order-preserving map;
b groups f: G — H is a group homomorphism.
3 Presheaves - a functor C°? — Set is called a presheaf on C.
4 Diagrams - a functor € — Set is called a diagram on C.

Note that a functor will preserve any property that is expressible as a commutative diagram.
For example, isomorphisms are preserved by all functors; if f is an isomorphism, then Ff is

also.
PROPOSITION

If F is full and faithful, then Ff isomorphic < f isomorphic.

PROOF
Let f € C(X, Y) such that Ff is an isomorphism. Then 3 inverse ¢ € D(FY, FX) for Ff.
Since F is full, then 3g € C(Y, X) such that ¢ = Fg. But now

F(fg) = (Ff)(Fg) = 1py.



And F(1y) = 1py, so since F is faithful, we have fg = 1y. Similarly gf = 1x. So gis an
inverse for f € C(X, Y), i.e. f is an isomorphism. O
1.5 - Contravariant functors
DEFINITION 1.5.1
A contravariant functor € — D is a functor C°° — D. That is:
+ on objects, X — FX;

F
+ on morphisms, X L Y — FY —f> FX;

+ identities are preserved;

+ F(go f)=FfoFg.

A non-contravariant functor is sometimes referred to as a covariant functor.

1.6 - The Hom functor
1.6.1 - REPRESENTABLES
Let C be a locally small category. We have a contravariant functor Hy or C(_, U):
Hy: C°P — Set
X— CX, U

X CX,U) ¢
o= i@(l,g)
Y eyu gf

Dually, we have a covariant functor HV or €(U, _):
HY: @ — Set
X — C(U, X)
X  CUX) g

fl= leen ]

Y CUY) fg

These are known as representables.

1.6.2 - THE Hom FUNCTOR
Again, take € locally small. Then we have a functor
H: C%® x € — Set
XY)— CXY)

X, Y) CX,Y) h
(f,g)l — |ee)
X, Y) CX,Y) ghf

where f: X > X' € CPandg: Y — Y € C.



1.7 - Natural transformations
DEFINITION 1.7.1

Let F,G: C — D be functors. A natural transformation «: F — G is a collection of
morphisms (known as components)

{ax: FX - GX | X € C},

such that,Vf: X — Y€ C,
FX —2 GX

th th

commutes (the naturality condition).
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DEFINITION 1.7.2
Given categories C and D, we define the (larger) category [C, D] where:

« objects are functors F: € — D;
 morphisms are natural transformations a: F — G,

such that:

+ identities are natural transformations 1z: F — F (for any F: ¢ — D with components
lpx

FX — FX; s
« for composition, given F i>G—>H, then f o « is the natural transformation with compo-

nents
Bxoax

(Boa)y: FX — HX.

F

a

€ ——~Gc—D

W
H
So, for example, [C, D](F, G) is a collection of natural transformations F — G.

DEFINITION 1.7.3

A natural isomorphism «: F — G is an isomorphism in the functor category; i.e. there
exists f: G — Fsuch thataof8 = 1g and foa = 1g. Note that two natural transformations
are equal iff all their components are.

PROPOSITION 1.7.4

a: F — Gis a natural isomorphism iff each component ax: FX — GX is an isomorphism
in D.

PROOF

Suppose « is a natural isomorphism, and let 8 be its inverse. Then

aof=1g = (vof)x=1ex = axofx=Ilex

10



and
Boa=1p = (Poa)x=1x = Pxoax= 1l

So Bx is an inverse for ax for each X € C. Thus each component is an isomorphism in D.
Conversely, if each component ay is an isomorphism, then let Sx be the corresponding
inverses for each X € C. Now, given f € C(X, Y), we have that

FX —2GX

Ff Gf
FY ———GY

commutes; i.e. (Gf) o ax = ay o (Ff). But now:-

By o (Gf)oaxofx = Pyoayo (Ff)o fx
so PByo (Gf)olgx = lpy o (Ff)o Bx
so  Pyo(Gf) = (Ff) o Bx;
hence

Gx P px

Gfl pfl

GY ——FY
By

commutes; so we can legitimately define the natural transformation  with components
Bx. And clearly g is an inverse for «, so « is a natural isomorphism. O

We can prove similar results that tell us that « is epic/monic iff all its components are.

8 - The 2-category Cat

DEFINITION 1.8.1

We define “horizontal composition” of natural transformations. We have seen “vertical

composition” already:
F
/I
C

B T
NZEANY
/\

But we can also compose:

G/a\ /\ Bra €.
We define (8 * a)x: HFX — KGX by

HEX % gex 5 kex



or

HEX 2% kex 5 kex.

By the naturality of f3, these definitions are equivalent:

ﬁFX
—

so we can define
(ﬂ * (X)X = ﬁGX o H(XX = K(XX o ﬂFX~

We consider the following particular case:

/\/\
\/\/

which we will (for convenience) write as:

lg * a: HF — HG

F

C a D——€ Ha: HF — HG.
G

Similarly we have:

T

e———D |p &  PF:HF— KF.

N

PROPOSITION 1.8.2 (THE MIDDLE-4 INTERCHANGE LAW)

mm

we have (8% o ) x (a® o aV) = (ﬁ(z) x a?) o ([3(1) x a),

Given

12



PROOF
Consider components. We have
/3(2) o /3(1)) * (06(2) o (x(l)) /3(2) o ﬁ(l))HX o ](06(2) o 06(1))

2 1 2 1
= o ik o Jo o o

and
(/5(2) xa?)o (/5(1) « aM)]x ﬁ(z) (2) ﬂ(l) (1).
So it is sufficient to prove that Kay o oy = [3(1) oy, But we have that
(1)
JGX —>—KGX
]txg)h Ka;?)h
JHX —— KHX

(1)
HX

commutes (by the naturality of V'), and so we are done.
DEFINITION 1.8.3
We can now define the 2-category Cat, consisting of:

+ objects, morphisms and two-cells;
+ composition of morphisms;
+ horizontal and vertical composition of 2-cells;

+ axioms - unit, associativity and middle- 4 interchange; “any two ways of composing are the

k24
same’.
DEFINITION 1.8.4

Given categories € and D, an equivalence consists of:

. functors € D, D N G
« natural isomorphisms GF= 1, FG@ 1p.

We call 8 the inverse up to isomorphism or the pseudo-inverse of a.

DEFINITION 1.8.5

A functor F: € — D is essentially surjective on objects iff V'Y € D, 3 X € C such that

EXZYeD.

PROPOSITION 1.8.6

Fis an equivalence of categories iff it is essentially surjective and full and faithful.

PROOF

Omitted.

13
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- Representability

The Yoneda Embedding

Recall that for each A € C, we have the functor Hy: C°? — Set. So we have an assignation
A +— Hy. We can extend this to a functor, known as the Yoneda embedding:-

H,: C — [C°P, Set]
A— HA
(f: A — B) — (Hf HA — HB))
where Hy is the natural transformation with components
(Hy)x: HaX — HpX
ie. C(X,A) — C(X B)
h— foh.

We need to check that this is a well-defined natural transformation, i.e. that

(Hy)y=fo_
C(Y,A) ———C(Y,B)

Hpg=_og Hpg=_og

C(X, A) — 15— C(X. B)

commutes. But along the two legs we just have:—
h+—foh h
and
(foh)og hogr——fo(hog)
so the naturality condition just says that composition is associative.
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Representable Functors
DEFINITION 2.2.1

A functor F: C°°? — Set is representable if it is naturally isomorphic to H, for some A € C,
and a representation for Fis an object A € C together with a natural isomorphism a: Hy —
F.

Dually, a functor F: € — Set is representable if F = H* for some A € C, and a represen-
tation for F is an object A with a natural isomorphism a: H* — F.

14



NOTE

The naturality square says, that Vf: V — W € C,

CW,A)—2 S FW
Hyf=_of Ef

commutes.
EXAMPLES 2.2.2

1 The forgetful functor U: Gp — Set is representable. Take A = Z, and « to be the natural
transformation with components:

ag: HYG — UG
f = fQ.

Then we can check that « is natural, and it is an isomorphism, since any homomorphism
f: Z — Gis completely determined by f(1).

2 ob: Cat — Set is representable. For let A be 1, the terminal category; then ob(C) =
Cat(1, C) is a natural isomorphism.

Now, we can make a few suggestive observations about natural transformations a: H4 — F.
Consider the naturality square

C(A,A) -2 FA
_of Ff
G(V, A) T)FV

We know this commutes; in particular, for the element 1, € C(4, A), we have

ay(la o f) = Ff(aa(la)),
so that « is in fact completely determined by as(14) € FA. So, we would like to define a
natural transformation a: H4y — F by setting a(14) = x € FA, and ay(f) = (Ff)(x). If this
is indeed a natural transformation, then we will have set up a bijection between FA and the
natural transformations H4 — F. Hence we get ...
2.3 - The Yoneda Lemma
THEOREM 2.3.1 (YONEDA LEMMA)

Let C be a locally small category, F: C°? — Set. Then there is an isomorphism

FA = [GOP) Set] (HA) F);

15



which is natural in A and F; i.e.

FB———[C°, Set] (Hp, F) FA ————————[C, Set]|(Hy, F)
Ff oHy and 6, 6o
FA ————————[C, Set](Hy, F) GA—————— [, Set] (H,, G)

commute, forall f: A — Band forall 6: F — G respectively.
PROOF

1 Given x € FA, we define X € [C°P, Set](H,, F) by components:
Xy: C(V,A) — FV
f— Ff(x)

We must check the naturality of X; given g: W — V, we need

C(V,A) —Y— SFV

C(W,A) ———FW
Xw

to commute. On elements, we have

f—— Ff(x) f
and

Fg (Ff(x)) fog—— F(fog(x)

But Fg(Ff(x)) = F(f o g)(x) by the (contravariant) functoriality of F, so the square com-
mutes as required.

2 Given « € [C°P, Set](H}, F), we define @ € FA by
a=as(la)
3 We check (7) = (). Given x € FA,
%= Xa(1y) = F(L)®)
= 1pa(x)
= X.
Given o € [C°P, Set](H 4, F), ais given by components
a: C(V,A) — FV
f = Ff(@) = Ff(aa(14)).

So we need only check that ay(f) = Ff(a«a(14)). We have the following naturality square

16



for a:
C(A,A) -2 FA

_of Ff
C(V,A)———FV
so on the element 14 € C(A, A), we have ay(14 o f) = Ff(aa(14)), as required.

4 We check naturality in A, i.e. that given any B ER A,

FA———— [C°P, Set](Hy, F)

Ff _OHf

FB—— [C°P, Set] (H, F)
commutes. On elements, we have:
XX X
and
x o Hy Ff(x) ——Ff(x).
Now, the former has components

(Hy) e
C(V,B) —— C(V, A) —*— FV

g fogi F(f o 9)(x),

and the latter
Ff(x)y

C(V,B) ————FV
§+———— Fgo Ff(x).
But (Fgo Ff)(x) = F(f o g)(x) by the functoriality of F; so the naturality square commutes
as required.

5 Finally, we must check the naturality in F; given a natural transformation 6: F — G, we
show that
FA —— [C°P, Set](H 4, F)

GA ——— [CP, Set]|(H4, G)

17



commutes. We have

XX X
and
fox 04 (x) N 97\(36)
with respective components
C(V,A)— GA and C(V,A)— GA

fr— 6y o Ff(x) f— Gfo8s(x)
But these two are equal by the naturality of 6; so the naturality square commutes as re-
quired. O

Dually, for F: € — Set, we have
FA = [C, Set](H”, F).
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THEOREM 2.3.2
The Yoneda embedding is full & faithful.

PROOF

We need to show that C(A, B) &, [CP, Set] (Hy4, Hp) is an isomorphism. By the Yoneda
lemma, with F = Hpg, we have

Hp(A) = [CP, Set](Ha, Hp).
So we just need to check that H, is the same isomorphism as that given by the Yoneda

lemma; i.e. that]A‘ = Hyor I/{\f = f. But

Hy = (Hp)a(l4) = f. O

Note that this shows that, given f, g: A — B, then Hf = Hy, = f = g. Also, given Hy LN Hpg,
there exists f: A — B such that Hy = h.

PROPOSITION 2.3.3

A = B € Cimplies C(X,A) = C(X, B) and C(4, X) = C(B, X), each isomorphism being
natural in X,

PROOF
H, is full and faithful, so A = B < Huy = Hpg, so C(X,A) = C(X, B) naturally in X.
Similarly for the dual statement. O

2.4 - Parametrised representability
Consider F: C? x A — Set. Forall A € A, we get
F(,A): C°° — Set
X +— F(X, A).

Suppose each F(_, A) has a given representation, i.e.

+ an object Uy;

18



+ anatural isomorphism as: C(_, Uy) — F(_, A).

So we have an assignation A +— U,. Can we extend it to a functor? And are the ay the
components of a natural transformation?

PROPOSITION 2.4.1
Given a functor F: C°°? X A — Set such that each F(_, A): C°? — Set has a representation
0 G(_) UA) - FL:A))

then there is a unique way to extend A — Uy to a functor U: A — C such that the a4 are
components of a natural transformation He 0 U — F.

PROOF

First we construct U on morphisms; i.e. given f: A — B, we seek Uf: U4 — Uj. In order
to satisfy the naturality condition on &, we need

C(, Uy) 25 F(,A)
F(_.f)

GL) UB) TF(»: B)
to commute.

Since the horizontal morphisms are isomorphisms, we get a unique morphism on the left
Hy, — Hy, making the diagram commute. Now, the Yoneda embedding is full and faith-
ful, so there exists a unique morphism Uy — Uy inducing it. Call this Uf. It only remains
to check that U is functorial; it will make & a natural transformation by construction.

1 Check U(14) = lya. Note that U(1,) is the unique morphism making the naturality square
commute, so it suffices to check that 14 makes the square commute.
We have
CL, Us) = F(, A)
ly,o_ F(_,14)

e(_» UA) TF(_’A)

which commutes as required.

2 We check U(go f) = Ugo Uf given A EN B £ C. Consider

C(, Us) 2= F(_, A)
Hyy F(_.f)
C(, Up) 2~ F(,B)

HUg F(,>g)

GL: UC) TF(,» C)
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3.1 -

Each square commutes, so the outside commutes. Now, the composite on the RHS is
F(_,g o f), and by definition it induces a unique map Hygy) on the left such that the
diagram commutes. So we must have
Hygop) = Hug o Hyy
= HUgOUf’
by functorality. But the Yoneda embedding is full and faithful, so we have U(go f) =
Ug o Uf as required. O
DEFINITION 2.4.2

A Cartesian closed category is a category C equipped with:

+ aterminal object T;
« binary objects;
« function spaces.

In fact, in the light of the above results on representability, we can also characterise a Cartesian
closed category as containing:

a representation for the functor F: X +— 1, since 1 = C(X, T) for T a terminal object;
representations for the functors F45: X — C(X, A) X C(X, B), since C(X,A) X C(X,B) =
C(X, A x B) naturally in X;

representations for the functors Fgc: X — C(Xx B, C), since C(XX B, C) = C(X, CP) naturally
in X.

We can do even better; using the parametrised representability result, we can:

from the functor F: (X, (A, B)) — C(X, A) X C(X, B), construct the functor U: (A, B) — A X B;
from the functor F: (X, (B, C)) — C(X X B, C) construct the functor U: (B, C) — CB5.

LECTURE 8 - 25/10/02

- Limits & colimits

Introduction
Consider any drawable diagram contained within some category D; for example
e ——oe——0—0

Then a limit over this diagram is a universal cone:

- CONES

A cone over a diagram consists of:

a vertex - an object in D;
projections - a morphism from the vertex to each object of the diagram,

such that all the resulting triangles commute:

A

20



3.1.2 -

3.2 -

3.2.1 -

LIMITS AS UNIVERSAL CONES

Informally, something is universal with respect to a property if any other thing with that prop-
erty factors through it uniquely. A limit is a universal cone over a diagram; that is, a cone such
that any other cone factors through it uniquely. For example:

-4 ;\.E. stghen Vit Y

there exists unique ¢ such that all the triangles commute. As before, the limit is unique up to
unique isomorphism.

- LIMITS OVER d

Let | be a small category ([ is a generalisation of our “drawable diagram”), and let D be a
functor [ — D. Then we have the cone over D:

avertex L € D;
for each object I € [, a morphism k;: L — DI

such that, forallu: I — I' €1,

L
ki kI’
DI—— DI’
Du

k
commutes. We write (L — DI)g.

A limit is a universal cone, and the universal property says: given a cone (Y 2, DI)¢y, there
exists a unique morphism f: Y — L such that “all triangles commute”, i.e., forall I € [,

A

DI

commutes.

Some specific limits
PRODUCTS

A product is a limit of shape [ with [ discrete. So, for example, we have

L \
DI4 DI" DI

our cone, where DI - -+ € obD. The universal property says, given any other cone from L’,

say, then
L 'L
DI Dr DI’ Dr”
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3.2.2 -

3.2.3 -

has a unique morphism L’ — L such that every triangle commutes. We write

[[pr % or.
I€l

We have already seen the product over the empty set, i.e. a terminal object, and the product
over {e, o}; that is, a binary product.

EQUALISERS

An equaliser is a limit of shape @ ———}e . A diagram of this shape in D is of the form
f
A %B.

A cone over this diagram is
E
AN
f
A FB.
Note that m = fe = ge as all triangles commute; so in fact we can rewrite this more simply as

. f
E——A ng such that fe = ge.

f
An equaliser is the universal such; so given any C — " A——=B such that fh = gh,
then there exists a unique factorisation: ¢

such that h = eh.

PULLBACKS

A pullback is a limit of shape

o —e

A diagram of this shape in D is



33

A cone over this diagram is

commuting (really, there is a projection c: Z — V, but we must have ¢ = fa = gb). A
pullback is the universal such; so given any commutative square

Z#W

U—7>-—V,
f

we have

L
I

a unique & such that ¢4 = a, and f'h = b. We say that ¢ is a pullback for g over f, and that
f" is a pullback for f over g.

LECTURE 9 - 30/10/02

Limits — formally
DEFINITION 3.3.1

Given Y € D, we define the constant functor AY:

AY: 1 — D
I—Y
fl—>ly.

From this we get a functor:
A :D — I, D]
Y— AY

X  AX
fi — iAf
Y AY

with every component of A f being f.

23



DEFINITION 3.3.2
A limit for D: | — D is a representation for the functor
[, DI(A_, D): D°? — Set.

That is, an object L € D and a natural isomorphism « with

R=

HL [|]7 ®](A_)D)
We write L = lim. ;D = [, DL
So we have an isomorphism

D(, [,DI) = [, D](A_, D).

Let us make explicit what the functor on the right hand side does; call it F. Then:

F: D°? — Set
Y — [I, D](AY, D)
Y [, D](AX, D) 0
fi — iFf
X  [L,DI(AY,D) 6oAf.

Now, what does a natural transform AY L D look like? We have:
+ foreach I € [, a morphism

k]l (AY)I — DI
Y — DI,

e forallu: I — I'inl,
(AY)I ———DI

(AY)u Du
(AY)I ——Dr

commutes by naturality; i.e.

commutes.

So such a natural transformation is precisely a cone over D with Y as the vertex. Now, consider
a representation as above, and let « be its natural isomorphism. Then we have

ay: D(Y, L) — [I, D](AY, D)
f = Ff(alp);
i.e., the natural transformation is completely determined by «a;1;.

Now, we have a cone given by a;1; = (kj)ser, say. So given any other Y and YLL on the left
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34 -

hand side, we have Ff(a;1;) with components k;o f; hence we have a bijective correspondence

morphisms ., conesoverD
vyL1 (ko frer

i.e., starting on the right hand side, given any cone (p;)se), there exists a unique morphism
f: Y — Lsuchthat p; = k; o f for all I; thus (kj)s¢ is a universal cone over D.

Note that any isomorphism on the left hand side will give rise to a universal cone.
DEFINITION 3.3.3
If a limit exists for all functors from D: | — D, we say D has all limits of shape .
If D has all limits of shape [ for all small/finite categories [, we say D has all small/finite
limits or that D is (finitely) complete.
Limits in Set
THEOREM 3.4.1

Set has all small limits.

PROOF
We seek a limit for F: | — Set. We define L, a set of tuples C H FI by taking all tuples
(x1)1er satisfying: I€l

. VIG H,X] € FI,
« VIS I, Fu(xp) = xp.

We have projections

L2 Fr
(xDrer — x1
for each I € [. We now show that this is a minimal cone:

1 Itis a cone; we need to show, for all u: I — I, that

L
pr X
FIr " FI
commutes. On elements we have
(D11 (xX1)zel
and
Fu(x;) X1 xr

so we are done here, since Fu(x;) = xp.
2 It is universal: we show that every cone factors through it uniquely. So consider a cone
q
(Z = Fl)jes; 50
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commutes; that is, for all y € Z, Fu(q;(y)) = qr(y). We seek a unique factorisation making
the following diagram commute for all I:

L Z
N A
FI
On elements, this would give
h(y) /y
a(y)

So, writing h(y) = (a;)ie1, we must have a; = g;(y). So define h by h(y) = (q1(»))er- It
remains to check that h(y) € L, so that for all u: I — I, Fu(a;) = ay; i.e.

Fu(qi(y)) = qr(y),
which follows since (Z Nyt )1cr is a cone. O

LECTURE 10 - 01/11/02

- Limits in other categories

THEOREM 3.5.1
If a category D has all small products and equalisers, then D has all small limits.
PROOF

Given a diagram D: [ — D, [ small, we seek a limit in D. The idea of the proof is to

construct it as an equaliser E —» P —— Q, where P and Q are certain products over the DI.
g

1 Put

P=][D:
Iel
with projections P P DI this is a small product, so exists.

2 Put
Q= [ o

u: [—Jel

with projections Q 2 py; again, a small product, so exists.

3 Induce f by the universal property of Q as follows: for all u: I — ], we have p;: P — DJ
inducing a unique f: P — Q such that Vu,

quo f=py. (1)

26



P g 'Q
X /
DJj

4 Induce g by the universal property of product Q (differently) as follows: for all u: I — J,
we have Du o p;: P — DJ inducing a unique g: P — Q such that, for all 4,

quo g=Du

P

pr

o pr.
' Q

qu

DI, —DJ

f
5 Take equaliser E % P —— Q; so in particular
g

fe = ge.

. proe . .
Claim that (E — DI)j¢) gives a universal cone over D.

6 First we show it is a cone; i.e. forall u: I — J,

Duoproe=pjoe

This is true, since
Duopjoe=gqg,0go0e
=gq,0foe
=poe

by (2)
by (3)
by (1)

(2)

(3)

(4)

. . . . . . VI
It remains to show that this cone is universal; i.e. given any cone (V' — DI)¢, we seek a

unique x: V— Esuch thatforallI € [, pjoeox =,

proe

27
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We will construct a diagram

DI

So suppose we are given such a cone (V BN DI)gp. Soforall u: I — J,

Duovr=vy. (5)
Induce k: V — P by the universal property of P: for all I € [, we have V - DI inducing a
unique k: V — P such that, for all I,

prok=wr. (6)

Induce x: V — E by the universal property of the equaliser; in order to do this, we must
first show that fk = gk. Now, for all u: I — J, we have VD] inducing a unique m: V —
Q such that

quom=vj. (7)

But fk and gk both satisty this condition, since, for all u,

4o fi=prok by ()
= by (6)
and
quo gk =Duopok by (2)
=D, o by (6)
=V by (5)

Hence fk = gk; so we can induce a unique x: V' — E such that

eox=k. (8)

We now check that x is a factorisation for the cones. So given I € I,
pioeox=prok by (8)
= by (6)
so we have the desired result.

Finally, we show that x is unique with this property; suppose we have a morphism y: V —
E such that, for all I,

proeoy=v. (9)

Now by construction x is unique such that ex = k, so we seek to show also ey = k. By
construction, k is unique such that for all I, p; o k = v; (by (6)); but (9) says that ey also
satisfies this. Hence ey = k, so y = x and we are done. g
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3.6 - Colimits
DEFINITION 3.6.1

A colimit for a diagram D: | — D is a representation

D('DI,_) = [1, DD, A_).

So a colimit for D: [ — D is essentially a limit of D°P: [°? — D°P. If D has all small colimits,
we say it is cocomplete.

LECTURE 11 - 04/11/02

3.7 - Parametrised limits
Recall two results:
1 Given a diagram D: | — D, a limit for D is a representation
D(, [;DI) = [I, D](A_, D)
2 Given a functor X: C°? X A — Set such that each X(_, A) has a representation
as: €, Ua) = X(, A)
then there is a unique way to extend A +— U, to a functor such that
C(Y, Uy) = X(Y, A)

naturally in Y and A, with components of the implied natural transformation given by a4.
PROPOSITION 3.7.1

Define F: | X A — D such that each F(_, A): [ — D has a specified limit in D:

D(, [{EIA)) = [I, DI(A_, F(_, A)).
Then there is a unique way to extend A — [} F(I, A) to a functor A — D such that
D(, [;FIL A)) = [, DAY, F(, A))

naturally in Y and A.
PROOF

Simple application of parametrised representability. g
APPLICATION 3.7.2

Suppose D has chosen limits of shape 1. Consider the evaluation functor

E:IxI[,D] —D
(I, D) — DI
Then £(_, D) has a limit for each D, | ; DI. By parametrised limits, we get a functor
Ji: [(,D] — D
D [,DI

such that D(Y, [; DI) = [I, D](AY, D) naturally in Y and D.
APPLICATION 3.7.3

We can restate the definition of a limit to get

D(Y, [,DI) = [, D(Y, DI).
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What does this mean?
1 The right hand side is the limit of the functor

D(Y,D_): | — Set
1+— D(Y, DI)

I D(Y, DI)

u — Duo

r D(Y,Dr)

Set is complete, so this certainly has a limit. What does fz D(Y, DI) look like? Well, it is all

tuples (ag)sep such that
VI a; € D(Y, DI)

and
Yu: I — I',Duoay = ap.

So this is precisely a cone over D; i.e.
J, DY, DI) = [1, DI(AY, D)
2 Observe that by parametrised limits, we have a functor
Y — [, D(Y, DI)

So
J;D(Y, DI) = [I, D](AY, D) = D(Y, [ DI)

naturally in Y and D.

3.8 - Preservation, reflection and creation of limits

Let ] 2 D £ & We can consider limits over D and limits over ED.
DEFINITION 3.8.1

Suppose we have a limit cone for D

(J, DI & DIyye,
We say F preserves this limit if
(F [, DI 2 FDI)
is a limit cone for FD in €. Note that it must preserve projections.
DEFINITION 3.8.2

Suppose FD: | — € has a limit cone. We say F reflects this limit if any cone that goes to a
limit cone was already a limit cone itself. That is, given a cone

z 2 DDy

F
such that (FZ L FDI);¢ is a limit cone for FD, then (Z g DI)¢; is also a limit cone.

30



3.9 -

DEFINITION 3.8.3
Suppose FD: | — & has a limit cone. We say F creates this limit if there exists a cone (Z
F
g DI)jep such that (FZ L FDI)¢; is a limit cone for FD, and additionally F reflects limits.

That is, given a limit for FD, there is a unique-up-to-isomorphism lift to a limit for D.

LECTURE 12 - 06/11/02

Examples of preservation, reflection and creation
PROPOSITION 3.9.1
Representable functors preserve limits.
PROOF
We consider
12 e L get

I'+— DI +— C(U, DI)

Given a limit cone for D,
(/,DI % DIy,
we need to show that
e, [,pn “% ew, pI)
is a limit cone for €(U, D_). Certainly, C(U, [, DI) = [; C(U, DI). And for projections
C(U, [, DI) = [1, C](AU, D) = [, €(U, DI)
frokiof
so we are done. Dually, we have

e(/'pL U) = [, €(DIL U)

so Hy takes a colimit in € to a limit in Set; and hence takes a limit in C°P to a limit in Set.
Thus Hy also preserves limits. O

PROPOSITION 3.9.2
A full and faithful functor preserves limits.

PROOF

Consider | 2 € -5 &, with F full and faithful, and let z g DI)j¢ be a cone such that F of
it is a limit cone for FD. We need to show that this cone itself is a limit.

Now, given any other cone (WgDI)Ieu, we seek a unique h such that g = f; o h for all
Ie€l So

1 Since F(ZgDI) is a limit, there exists unique m such that Fg; = Ff; om forall I € [.

2 Since F is full, there exists h: W — Z such that Fh = m.

3 Check commuting condition: we know that, forall I € [, Fg; = Ff;oFh,i.e. Fgy = F(f;oh).
Hence f; o h = g; since F is faithful.

4 Suppose there is a k such that forall I € [, f; o k = g;. Then Ff; o Fk = Fg; for all I; but
we have that m is the unique morphism such that Ff; o m = Fgj; hence Fk = m = Fh, so
k = h (as F faithful), and we are done. O
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4 - Ends and coends
4.1 - Dinaturality
DEFINITION 4.1.1

Given functors F, G: C°? x € — D, a dinatural transform a: F — G consists of, for each
U € €, a component
ay: F(U,U) — G(U, U)

such thatforall f: U — V,

FU, U)—5G(U, U)

F(U, V) G(U, V)
F(V, V) ——G(V, V)
commutes.
Note that there is no sensible composition of dinatural transformation, and hence Dinat(F, G)
is just a set.
4.2 - Ends and coends
Recall that a limit for D: [ — D is a representation for [I, D](A_, D) = Nat(A_, D), such that
D(Y, [;DI) = Nat(AY, D) naturally in Y.

DEFINITION 4.2.1
An end for F: [°? x [ — D is a representation for the functor
Dinat(A_, F): D°? — Set
so that
D(Y, [, F({ I)) = Dinat(AY, F) naturally in Y.
Dually, a coend for F is just a representation for Dinat(F, A_): D — Set so

D(f'E(L 1), Y) = Nat(F,AY)  naturallyin Y.

REMARK

Ends are in fact just a special sort of limit; any end can be expressed as a limit.

4.3 - Ends in Set
Recall a limit in Set for D: [ — Set is given by
{ (¢Dier | VL x; € DLNYu: I — T, Du(x;) = xp }.

An end in Set for X: [°P x | — Set is given by
{ (xI)IGU | VI) xi € X(I, I); vf I— Il) X(l) f)(xl) = X(f! 1)(x1') }
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4.4 - Key observations
OBSERVATION 4.4.1

Parametric results follow, so we can use ends in Set to restate the definition of (co)ends.
Consider

Xy: [°P x [ — Set
(L, ])— D(V,F(L]))
We have an end in Set

[, Xv(L,D) = [, D(V, F(I,I)) = Dinat(AV, F)

So we get:
End: D(V, [, FIL, 1)) = [, D(V, F(, I))
Coend: D([ F(I 1), V) = [, D(F(L 1), V)

OBSERVATION 4.4.2

The set [C, D](F, G) is an end in Set. For consider

X: C% x C — Set

(U, V)= D(FU, GV)
Then [, X(U, U) = [, D(FU, GI) is just
{ (av)vec | ay: FU— GUand Vf: U— U, X(1, f)(av) = X(f, 1)(aw) }.
But now
Gfoay = X(1, f)lay) = X(f, )(ay) = ay o Ff

so this is just a naturality condition on the ay’s; and hence we have

JyX(U,U) = f, DEFU, GI) = [C, DI(F, G).

LECTURE 13 - 08/11/02
OBSERVATION 4.4.3

We can restate the Yoneda lemma. Recall that if X: C°P — Set, we have

X(U) = [CP, Set](Hy, X)
= [L[Hu(V), X(V)] where [, | means morphisms in Set
= V[TV, U), X(V)]

4.5 - Applications
Consider a functor F: | — [C, D]. What does a limit cone for this look like? We have

(L = Fl)e
with L a functor and a7 a natural transformation L — FI with components (a;)c: LC — FI(C).

Now, given C € C, we can evaluate the whole cone at C:

(LC 5 FI(C))rer
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Now if this is a limit cone in D for

F(ﬁﬂﬂ@
1 FI(C)

then we say that the limit for F is “computed pointwise”.
PROPOSITION 4.5.1

Suppose F: | — [C, D] is such that for all C € C,

Fc:1—D
1+ FI(C)
has a limit cone c
(, IO L5 FI(Q)
Then F has a limit
(f, FISFI)

computed pointwise; i.e.

(fIFI) (C) = J;FI(C)
and (k;)c = (PC)I

PROOF
We have a functor

F:IlxC—D
(I, C) — FI(C)

and each F(_, C) = Fc has a limit, so by parametrized limits, we get a functor
C+ [;FI(C)
Call it L, and claim this gives the limit as required. So we need to show
[C, DI(Y, L) = [, [C, DII(AY, F)

naturally in Y, and to check projections.

Now,

[C,DI(Y,L) = [ D(YC, LC) set of nat trans is end in Set
= J¢D(YC [, F( O) rewriting LC
= [, DIA(YC), F(, C)) by definition of limit
= [C, [I, D]](A(Ye), F(_, ®)) end in Set is set of nat trans

= [I [C, D]I(AY, F)
where the last isomorphism holds since
[C [, D]l = [Cx[D] =l [C D]
Note that each line is natural in Y; and the third line gives the projections as required. [J

We have the same result for colimits, ends and coends. However, it may be possible for non-
pointwise limits to exist if not all the F¢’s have limits.
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THEOREM 4.5.2
The Yoneda embedding preserves limits.
PROOF

Consider [Igdli [C°P, Set]. Suppose we have a limit cone for D,
ki
(fIDI — DI)IEH

H
We need to show that (C(_, [, DI) A, C(_, DI))jgj. is a limit for He o D. By the previous
result, it suffices to do this pointwise; so for all C € C, we need that

(C(C [, D) = ¢(C, DD)e:

is a limit for I — C(C, DI), i.e. HcoD. But we have already shown this, since representables
preserve limits, and the given cone is just Hc of (; DI TDI el [l
1

LECTURE 14 - 11/11/02
THEOREM 4.5.3 (FUBINI)

Suppose F: | X J — D is such that F;: | — D has a limit [, F(I,]) for all ] € J. Then we
have a functor

JiF(@,_): T [{F(L])
such that

[ EGD = [4, F@D)

in the sense that if one exists, then so does the other, and they are isomorphic with corre-
sponding limit cones.

PROOF

The right-hand side is a representation of [ X J, D](A_, F); the left-hand side is a repre-
sentation of [J, D](A_, [, F(I, _)). Now,

[1 % J, DIAV, F) = [I, [J, DIIAV, F(, 1))
= [i[J, DI(AV, F(ZL, L))
= [J, DIQAV, [, F(T ).
Hence representations give the result. O

COROLLARY 4.5.4
Suppose F: | x J — D such that [, F(I, _): J — D and [;F(_,]): | — D exist. Then

L F@) = [, [,EL))
in the same sense as above.
PROOF
Both are isomorphic to |, an F@ ). O

Note that also we have colimits, ends and coends commuting with themselves; also (co)ends
commute with (co)limits.

THEOREM 4.5.5 (DENSITY)

For X: C° — Set, we have

X)) = VoW, w) x X(W),
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naturally in U.
PROOF
We aim to show that
[CP, Set](X, Y) = [C, Set] (/" C(, W) x X(W), Y)

and deduce result by above. So:

RHS = fU[fW C(U, W) x X(W), Y(U)] set of nat trans is end in Set
= [ JwlC(U, W) x X(W), Y(U)] restate definition of colimit
= [w JUlCU, W) x X(W), Y(U)] Fubini interchange
= [y [u[X(W), [CU, W), Y(U)]] definition of function space
= [ [ X(W), [LICU, W), Y(U)]] restate definition of end
= [y [X(W), Y(W)] Yoneda restated
= [C®P, Set](X, Y) end in Set is set of nat trans

Hence, since the Yoneda embedding is full and faithful, we have the desired natural iso-
morphism
x= e, w) x X(W). O

THEOREM 4.5.6

Every presheaf is a colimit of representables.
PROOF

By previous result, we have

XU = ["ECCU, W) x X(W)

The idea of the proof is that this is almost a colimit of representables. We would like to say
thatitis [V *™) C(U, W). Can we do this in any way?

We can, by defining the Grothendieck Fibration. Given X: C°P — Set, we define a category
G(X) with

+ objects being pairs (W, x), W € C, x € XW.
+ morphisms (W, x) — (W, x’) being f: W — W’ such that Xf(x") = x.

There is a forgetful functor

P:GX)—C
W, x)— W

So we get G(X) 5 € % [CP, Set], and
X(U) = [*°Y e, P(a)
HencewegetX = [ w€e® g P(a)» @ colimit of representables. O
THEOREM 4.5.7

A presheaf category [CP, Set] is Cartesian closed.
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5.1

PROOF

Limits and colimits are computed pointwise, so we get the terminal object and binary prod-
ucts from those in Set. So we need to find function spaces. So, given Y, Z € [CP, Set], we

seek ZY € [C°P, Set] such that

[CP, Set] (X, ZY) = [C°P, Set](X X Y, Z)

naturally in X and Y. So put
Z'(U) = [C, Set](Hy X Y, Z)

= [LIC(V, U) x Y(V), Z(V)] end in Set, products ptwise.

Then

[CP, Set] (X, Z¥) = [,[X(U), Z¥(U)]
= [LIXU), [,IC(V,U) x Y(V), Z(V)]]
= [y [y[X(U), [C(V, U) X Y(V), Z(V)]]
= [, [y[X), [C(V, D)[Y(V), Z(W)]]]
= [y [u[X(U) x C(V, U), [Y(V), Z(V)]]
= [,/ X(U) x TV, U), [Y(V), Z()]]
= [L[X(V), [Y(V), ZV)]]
= [LIX(V) x Y(V), Z(V)]
= [CP, Set](X X Y, Z2)

Thus Z¥ is a function space as required.

end in Set

write in definition
restate defn of limit
c.c. of Set, Fubini
c.c. of Set

restate defn of colimit
Density
c.c. of Set

end in Set, products ptwise.
O

LECTURE 15 - 13/11/02

- Adjunctions

- Definitions

DEFINITION 5.1.1

Let F: € — D, G: D — C be functors. An adjunction F 4 G consists of an isomorphism

D(FX, Y) = C(X, GY)

that is natural in X and Y. We say F is left adjoint to G, and G is right adjoint to F.

So, we have a correspondence

morphisms - morphisms
FX—-Y X—GY

NOTATION

We write
EX 5 vy €D X

f
H
Z and =
X = GY €¢ FXL

We write (") for the adjunction operation, and call it transpose. Note ? =fg=g
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What do the naturality conditions mean? Naturality in X says that, for any h: X' — X,
D(EX, Y) ——C(X, GY)
_OoFh _oh
D(EX, Y) ——C(X,, GY)
commutes. Similarly, naturality in Y says that for any k: Y — Y7,
D(EX, Y) — L€ (X, GY)
ko_ Gko_
D(EX, Y) — L -C(X', GY)

commutes. That is,

x &N x 4 gy X 5 v & vy
— and -
o Mopx Loy x %5 v % gy
oh= foFh koo=Gkoyg
g 4

Now, this is actually the Yoneda lemma in disguise:

D(FX, Y) = C(X, GY)

is HX* = C(X,G )

and C(X, GY) = D(FX, Y)
is Hgy = D(F_,Y)

Yoneda tells us that each of these natural transforms is completely determined by where the
identity goes:

FX % Fx Gx 29 Gy
= and -
X - GFX FGY — Y
Then by naturality,
1px 4
_ FX — FX = Y
g§=Ggonx G
1x g
X — GFX — GY
and
f Loy
7 — ex o Ff X = GY — Gy
Ff &y
FX — FGY — Y

And in fact, the 7x, ey are components of a natural transformation.
PROPOSITION 5.1.2

Given F 4 G, we have natural transformations 7 and € with components given by #x, €y.
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PROOF

Check naturality. For #, given f: X — X/,

X — "™ GFX
f GEf
X ———GFX'
must commute. Now, we have:-
x ™ erx % Grx
X o Y e 2 opx
f fxt

X = X = GFX
But we have transposed twice, and hence we have equality as required. Similarly fore. [
DEFINITION 5.1.3

Given F 4 G, we call 7: 1¢ => GF the unit and e: FG = 1 the counit of the adjunction.

5.2 - Examples
EXAMPLES 5.2.1
Free - forgetful. For example:
1 U: Gp — Set has a left adjoint F + U, where F(S) gives the free group on S; so we have
Gp(FS, G) = Set(S, U(G))

2 U: Alg — Vect which forgets the multiplicative structure; we have F - U, where F(V) is
the free algebra on V.
3 U: Ring — Monoid has a left adjoint

Zo : M— ZM = {formal finite combinations Z/\im,-, Ai €7Z,m; € M.}

4 U: Ab — Gp has a left adjoint “free abelianization”: GA® = G/IG, G].
5 U: Alg, — Liey has left adjoint L — U(L) = universal enveloping algebra of L.

EXAMPLES 5.2.2

Reflections - inclusions = coreflections. If € — D has a left adjoint, it is called a reflector
and exhibits C as a reflective subset of D.

1 As above, Ab— Gp; Ab is reflective in Gp.

2
{ complete metric spaces, } _ { metric spaces, }

uniformly cts functions uniformly cts functions

has left adjoint “completion”.

compact Hausdorff spaces, | topological spaces,
uniformly cts functions uniformly cts functions

has left adjoint Stone-Cech compactification.
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4 Gp— Monoid. Gp is reflective and coreflective in Monoid, via

M+—{m € M | mis invertible }

EXAMPLE 5.2.3
Closedness. Let C be a cartesian closed category. Then for all B € €, we have
_XBA()

i.e.
C(A x B,C) = C(4, CB)

naturally in A and C.
EXAMPLE 5.2.4

Adjoints for representable functors are powers and copowers. Recall given an object A € €
and a set I, we can form the I-fold power:

A'=T[A=1[LA]
i€l
and dually the I-fold copower:
IxA=]]A
i€l

By parametrised limits, we get functors:

[ ,A]: Set — C°
X A:Set—C

Now, Set(I, C(U, A)) = C(U, [I, A]) = C°P([L,A], U). So [_,A] 4 €(_,A) = Hy. Similarly
_ X AHC(A,_) = H", since Set(, C(A, U)) = C(I x A, U).
So Hy has an adjoint iff C has all small powers of A iff C°P has all small copowers of A.
If C has all small powers and copowers of A, we get
CUXAU) =C@AI[LU])
via Set(l, C(A, U)). SoI x _ [l _]: € —C.

LECTURE 16 - 15/11/02

5.3 - Triangle identities
PROPOSITION 5.3.1

Given an adjunction F - G, then the unit#: 1 = GF and the counit ¢: FG = 1 satisfy the
triangle identities; that is, the following diagrams commute:

ey Fnx
GY — GFGY FX— FGFX
Gey and ex
loy 1rx
GY FX
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PROOF

Gy M, Grgy %% Gy X ™ FGEX & EX
FGY X% Frgy & v and x ™ Grx 19 GFx
Gy 9% gy X 2 Ex

THEOREM 5.3.2
An adjunction F - G is completely determined by natural transformations
n: 1= GF
e FG=1
satisfying the triangle identities.
PROOF
Suppose we are given such ¢, 7. We need to show that
D(FX, Y) = C(X, GY)
naturally in X and Y. So, given f: X — GY, put

7 ix 2 FGY % Y
and given g: FX — Y, put
@ X ™ GEX % Gy

We need to check naturality. For naturality in X, we need, given h: X’ — X, that fh =
f o Fh. Now,

ﬁzgyOF(fh)
= (eyo Ff)o Fh
=_7th.

For naturality in Y, we need, for all k: Y — Y, kg = Gk o g&. Now,

kg = G(kg) o ny
= Gk o (Ggony)
=Gkog.

Now we need to check that these are inverse: given f: X — GY, we need that f = ? We
have

F=rx L rGy & 1.
So
7= x—"rx - .6rGY 6y
f % -

GY

41



Note that the left hand circuit commutes by the naturality of , and the right hand circuit
commutes by the first triangle identity, so f = f. Similarly, given g: FX — Y,

FGg ey

= Frix
g= FX FGFX FGY Y
{epx
Lrx 4
FX
Here, the left circuit commutes by the second triangle identity, and the right circuit com-
mutes by the naturality of & hence ¢ = g, as required. 0
REMARK

Adjunctions can be composed:
F1 Fz L. F2F1
C—D— giving C—¢&
Gi G, GiG,

from (€(F2F1X, Y) = D(FIX, G2Y) = G(X, GleY)

5.4 - Adjunctions as parametrised representations
To give a left adjoint to G: D — C, it is sufficient to give, for each X € €, a representation for
CX,G ): D — Set.

By parametrised representation, this extends uniquely to a functor which is the left adjoint we
are looking for. Dually, a right adjoint to F: C — D is a representation for

D(F_,Y): C%P — Set.

Recall “D has limits of shape [” means, for all D: | — D, there exists a representation of
(I, DI(A_, D): D°P — Set
i.e., D has limits of shape [ iff A_: D — [[, D] has a right adjoint. Dually, D has colimits of
shape liff A_: D — [l, D] has a left adjoint.
5.5 - Adjunctions as collections of initial objects
DEFINITION 5.5.1
Given G: D — Cand X € €, we define the comma category (X | G):
+ objects are pairs (f, Y), X L GY;
+ morphisms (f, ¥)—( f’, Y') are morphisms YTY such that
X
/ \\f,

1
GY%G}I GY

commutes.
PROPOSITION 5.5.2

To give a left adjoint for G: D — C is equivalent to giving, for all X € C, an initial object
for the comma category (X | G).
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PROOF
An initial object in (X | G) is a pair (4, V) with X 5 GV such that, for all X L GY, there
exists a unique h: Vx — Y such that
X
/ \\f
_—
GVx o GY

commutes. So
D(Vx, Y) = C(X, GY)
fr—Ghou
We need to check naturality in Y. So, for all g: Y — Y, we have
D(Vy, Y) ——C(X, GY)

D(Vy, Y) ——C(X, GY)

and so on elements
hi Ghou

goh——G(goh)ou=GgoGhou

and so this is a representation as required. O

5.6 - Duality

We note that there are a lot of duality relations going on with adjunctions:

left adjoint — right adjoint
unit — counit
natural in X — natural in Y
first triangle identity - second triangle identity

Why is this? Consider

F F
FA4G C—D also G - F, G ——= D°p

G G
D(FX,Y) = C(X, GY) DOP(Y, FX) = C°P(GY, X)
F4G:D—¢C G+ F: C°P — DoP
unit yx: X — GFX counit x: GFX — X
counit ey: FGY — Y unit ey: Y — FGY
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6.1 -

6.2 -

LECTURE 17 - 18/11/02

- Adjoint functor theorems

Preservation
THEOREM 6.1.1
Suppose F 4 G: D — C. Then G preserves limits, and F preserves colimits.

PROOF

k
Consider D: | — D with limit cone ( f; DI ~ DI)je;. We need to show that G of it is a limit
cone for GD: | — C. The cone becomes

(G [,DI =% GDI)pa.

We need a natural transformations C(_, G [; DI) = [I, C](A_, GD) with components
C(V, G [;DI) = [1, C](AV, GD)
f = (Gkro fre
Now,

C(V, G [,DI) = D(FV, [,DI)
= [ D(FV,DI)
= [,C(V, GDI)
= [0, C](AV, GD).
And on projections:
f=f
— k[ (@) j—
(g Gk[ (0] f
as required; and dually for F. O

General adjoint functor theorem
DEFINITION 6.2.1

Given a category A, a collection | € A is weakly initial if for all A € A, there exists a
morphism I — A for some I € [.

EXAMPLE
{initial object} is a weakly initial set.
THEOREM 6.2.2 (GENERAL ADJOINT FUNCTOR THEOREM)

Suppose we have a functor G: D — C that preserves small limits, and that D is locally
small and complete. Then G has a left adjoint iff for all X € C, the category (X | G) hasa
weakly initial set.

This last condition is known as the solution set condition.
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PROOF

Here is the general structure of the proof:

G preserves

D 1
D locaﬁly small complete small limits
X | G) locally s

— D creates
small limits

e

small

X1G)

complete
/ G has a left
(lei S)i?fas adjoint iff for
(X | G)has all X, (X | G)

has initial

\ object

GAFT
where we define P: (X | G) — D to be the obvious forgetful functor. So:

initial object

LEMMA 1
P: (X | G) — D creates small limits.

PROOF

Let D: | — (X | G) be a diagram. We need to show that, if PD has a limit cone, then
there is a cone

(V% DIy

in (X | G) such that (PV P, ppr )iei is a limit for PD in D, and that any such cone is
itself a limit for Din (X | G).

1 Suppose PD: [ — D has a limit cone, say (L % pPDI )1er:
L

cr cp
cp

PDI —=PDI' —=PDI"

2 G preserves small limits, so (GL A GPDI)¢ is a limit for GPD in C.

GL
Ger Gep Gepr
GPDI ——GPDI' ——GPDI"
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(DI)je gives a diagram in (X | G)
X

N

GPDI GPDI GPDI"”

which is precisely a cone (X — GPDI)¢; in C. Hence we induce a unique morphism
u: X — GL making everything commute:

X »GL

/ M ()

GPDI GPDI' GPDI"

Since everything in the diagram commutes, it forms a cone over D in (X | G), with
vertex V = (X % GL). Moreover, by construction is it unique such that applying P to it

gives the original cone (L ~ PDI)¢;. So we have shown that, given a limit cone for PD
there is a unique cone in (X | G) that maps to it, given by (1) above. It remains to show
that this cone is universal.

Given any cone ( (X L GY) — DI)i¢ in (X | G), we seek a unique factorisation (X

L GY)— V:
GY

XM)GL
GPDI ———GPDI'

Applying P, we geta cone (Y — PDI)¢ in D, and since L is a limit, this induces a unique
morphism h: Y — L making everything commute in D. But now, by the uniqueness of
u we have Gh o f = u, since Gh o f satisfies the conditions making u unique. So h is a

morphism in (X | G):
GY
VN
X . GL

and so is the unique factorisation as required. So the cone (1) is indeed universal and P
creates limits as required. 0

So now we can quickly deduce

LEMMA 2

Foreach X € €, (X | G) islocally small and complete.

PROOF

Since D is locally small, so too is (X | G). Now, let D be a diagram in (X | G). Apply
P to get a diagram PD in D. This has a limit, since D is complete. And by lemma
1, P creates it from a limit in (X | G); i.e. Dhasalimitin (X | G). So (X | G) is
complete. O

Now, we need only prove
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LEMMA 3 (INITIAL OBJECT LEMMA)

If A is locally small and complete, then A has an initial object iff A has a weakly initial
set.

PROOF

= is clear; so we need to show <. So let [ be a weakly initial set in A. We need to
construct an initial object from [.

So, set P = ][, I. This is a small product, since [ is a set. Now set L to be a limit over
the diagram of all morphisms PEP; this is a small limit since A is locally small.
We claim that L is initial in A. Note that L has projections

Now:

1 k = K/ since all triangles commute, and we have 1p: P — P;
2 forall f: P— P, fk = k, since all triangles commute;
3 kis monic (c.f. proof that an equaliser is monic).

We immediately have that I weakly initial = {P} weakly initial = {L} weakly initial.
So for all A € A, there exists a morphism L — A.

s
We need to show this morphism is unique. So suppose we have L ——= A. Consider

t
/
k m e S

L p E L—/=A
t

where E -% L is an equaliser of s and t.

Now, (kem)k = k by (1) above. But k is monic, and k(emk) = k o 1, so emk = 1. Now
se = te since e is an equaliser. Hence

s = semk = temk =t
as required. So L is indeed an initial object. 0

So now by lemmas 2 and 3 together with Proposition 5.5.2, we deduce that G has a left
adjoint iff, for each X € C, (X | G) has a weakly initial set, as required. O

LECTURE 18 - 20/11/02

6.3 - Special adjoint functor theorem
DEFINITION 6.3.1
Consider monics A — X. Define a < b ift 3c: A — B such that

A——— B

NV

X
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commutes. Observe that if there exists such a ¢, then it is unique (since b is monic) and
monic (since a is monic). Now, set a ~ biff a < band b < a. The equivalence classes
under ~ are called subobjects of X.

DEFINITION 6.3.2

A category C is wellpowered iff for all X € C, the collection of subobjects of X is a set;
equivalently, iff there exists a set of representing monics into X.

DEFINITION 6.3.3

f
A collection B— D is cogenerating if whenever X —— Y such that
g

VY-LB, BeB, bf = bg
then f = g.
THEOREM 6.3.4 (SPECIAL ADJOINT FUNCTOR THEOREM)
Suppose G: D — € such that

+ Cislocally small;
+ D is locally small, complete, well-powered and has a cogenerating set;

Then G has a left adjoint iff it preserves limits.
PROOF

= is clear; the point is <=. We aim to show that each (X | G) has a weakly initial set, so
we can apply GAFT. That is, given any X € €, we find aset A C (X | G) such that for each
f: X— GY € (X | G), there exists morphism

X—25GA

GY
for some X - GA € A. So we fix X and construct such a set A. Let B be a cogenerating set
in D.
1 Put
Qx= ][ B

X
X—GB,
BeB

with projections Qx o B (one for each X - GB). This is a small product since B is a set
and C is locally small.

Qx
/{\
q«
B B

2 D is well-powered, so pick a set of representing monics into Qx (i.e. one monic for each
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isomorphism class). Write M = {representing monics A— Q}.

A A

N

Qx

3 Put
A = {X-% GA such that JA "™ Qx € M} € (X | G).
This is a set since M is a set and C is locally small. We claim that A is the desired weakly
initial set in (X | G). So we need to show, given any f: X — GY € (X | G), that there

exists
X—2 5GA

GY

with X % GA € A. So we fix X > GY and seek such a triangle.

py= ][ B

y: Y—B
BeB

4 Put

with projections Py Ly (one for each y: Y — B.

Py
AN
B B

« form Y — Py, show monic;

« form Qx — Py;

take pullback; G preserves pullbacks;
form X — GQx making outside commute;

—~

X

~
.

. a .
induce X — GA as required;
a € A since g monic.

GQx — % 5GPy

5 Induce T 4 Py by the universal property of the product Py:
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So we get unique d such that

Vy:Y—B, p,od=y (1).

We show that d is monic; suppose we have i{ Y 4 Py with ds = dt. Then certainly,

t
forall y: Y — B, pyds = p,dt. So by (1), forall y: Y — B, ys = yt. Hence s = t since B is
cogenerating. Hence d is monic.

Induce Qx -5 Py by the universal property of product Py. To use this, we need to find for
each Y?B a morphism Qx — B.

Now, we have a projection Qx %, Bforallx: X — GB, and given any Y 25 B, we certainly
have a morphism

x=xL6rZ s

$0 we can use projections ggyos: Qx — B:

Qx
e
qGyof pVY q6y/of
Py py
B . B
inducing a unique e: Qx — Py such that

Vy: Y —B, qgef=pyoe (2).

Form the pullback
A—L Yy
Qx ——Py

Now d is monic, so g is monic; without loss of generality we can assume g is a representing
monic (since it must be isomorphic to one, so we can take an isomorphic pullback). G
preserves pullbacks so

GA —GY

Gg Gd

GQx —*—GPy
is also a pullback.

Induce X - GQx by the universal property of the product GQy. Since G preserves limits,
GQx is indeed a product,

GQx= [] GB

X-5GB
BeB
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10

Gqx
with projections GQx A GB, one for each x: X — GB, B € B).

X
h
x Géx ¥
Gqx Gay
GB . GB'
So we have unique h such that
Vx: X—GB, Ggyoh=x (3).

We now show that the outside of the diagram (*) commutes, using the universal property
of the product GPy. For each y: Y — B, we have the following diagram:

GOy —%GPy (1)

(3)
Gqcyof GB

Now, the outside commutes by (3), and the triangles commute as shown. So we need show
that Geoh = Gd o f.

AIM

We use the universal property of the product GPy to induce a unique k such that for all
y: Y — B, Gp, o k = Gy o f; then we show that Ge o h and Gd o f both satisfy this
condition.

G preserves limits, so GPy is a product

Gry= [] GB
y: Y—B
BeB
. s . Gpy . Ggof
with projections GPy — GB. Now, for each y: Y — B we have a morphism X —— GB:
X
k
Gyof / GPy \&'°f
pr pr/
GB e GB'
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inducing a unique k: X — GPy such that
Vy:Y—B, Gp,ok=Gyof (4).

11 Ge o hand Gd o f both satisfy this condition, since for all y: Y — B, we have

proGdof:G(pyod)ongyof

and
proGeoh=G(pyoe)othquofoh(é)Gyof.

Hence by the uniqueness of k, we have Geoh = Gd o f and so the outside of (*) commutes.
12 Induce X -5 GA by the universal property of pullback (as in (*)). Then X 2, GA € A since

there exists monic A~ Qx € M, and we have a commuting triangle
X—"—GA
Gt
N
GY
in (*) as required.

So A is indeed weakly initial, and hence (X | G) has a weakly initial set for all X € C. So finally,
since D is locally small and complete, we can apply GAFT to see that G has a left adjoint. [J

LECTURE 19 - 22/11/02

7 - Monads and comonads

7.1 - Monads
Suppose we have an adjunction F 4 G: D — €. Write T = GF: € — €. We have natural
transformations
n:le= GF=T nx: X — TX
GeF: GFGF = GF
writeasy: > = T px: TX — TX

We can think of : 1¢ — Tasa “unit” and y: T> — T as “multiplication”.
PROPOSITION 7.1.1

Under the above conditions, the following diagrams commute:

1 Unit law:
T
LT L TX — " T2Xe— " TX
\[&/ ie. VX N‘X commutes.
1 Lrx l7x
T X
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2 Associativity:

T3 T T2 X AML)TZX
Ty[ [u ie. VX Tﬂxh h#x commutes.
T T°X ——1X

PROOF

NGEX

GFnx
GFX ——GFGFX+——— GFX
GFX
commutes, since the left hand triangle is G of the triangle identity, and the right hand

triangle is the triangle identity of FX.

Gergrx

GFGFGFX ——GFGFX
GFGegx Gerx

GFGFX —GFX
Gepx

commutes as it is G of the naturality square of ¢. O
DEFINITION 7.1.2
A monad on a category C consists of a functor T: € — € and natural transformations
n:1=T “unit”
=T “multiplication”
satisfying the unit and associativity laws as above.
EXAMPLES 7.1.3
1

()*: Set — Set
A A*

Where A* = {lists (a,...,a,) | n > 0,each a; € A}. Put
Na:A—TA = A"

at (a)
and
pa: A — A
(@115 a1m ) vos @k1s - o> Ak ) = (@115 -+ o5 Qangs o o5 Akl -+ > k)

Then (()*, #, u) is a monad on Set - the “free monoid monad”.

2 The identity functor is a monad.

53



3 Let (M, e, -) be a monoid. Then we have
M x _: Set — Set,
which we can equip with a monad structure. So set

nx: X—Mx X
x+— (e, x)
px: M X (MxX)—MxX

(my, (my, x)) — (mymy, x)

Then the unit and associativity laws for the monad follow precisely from those for the
monoid.

DEFINITION 7.1.4

Dually we have comonads, a functor L: D — D with 1p & L % L? satisfying the dual of
the monad axioms.
7.2 - Algebras for a monad
DEFINITION 7.2.1
Let (T, 1, u) be a monad for C. An algebra for T consists of an object A € C together with a
morphism TA %, A € @ such that the following diagrams commute:

A—" A 74— TA

TA ——A.

A map of algebras (TA % 4)— (1BY B)isa morphism A /., B such that

Tf
TA ——TB

Ll
A———B
commutes. T-algebras and their maps form a category which we denote by CT.
EXAMPLES 7.2.2
1 T = ()*: Set — Set. A T-algebra is precisely a monoid. For an algebra is a set A and a
function A* % A giving multiplication:

(ap, az...,a,) > aa;y. .. 4,
()—e

The monad axioms tell us that the multiplication on A must be associative.
2 T =id. Then CT = €.
3 T =M X _. T-algebras are sets with a monoid action: M X A A
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LECTURE 20 - 25/11/02

- Free algebras

We can define a forgetful functor:
v:ef—e
(TA % A) 1> A

ALBHf

We may ask two obvious questions: does U have a left adjoint; and does T arise naturally from
an adjunction?
PROPOSITION 7.3.1
U has a left adjoint F: € — CT,
PROOF

We construct F as follows:

T2A
+ on objects, FA = im , the “free algebra on A”;
TA

s T?A rf T’B
+ on morphisms, F(A — B) = i/m - l#B
TA TB

We need to check three things: that FA and Ff satisfy the axioms for an algebra and a map
of algebras; that F is functorial; and that F is left adjoint to U. So:

1 FAisa T-algebra:

TA —"" T4 TSA —"T2A
N/M TMAB BFA
Ia
TA T’ A ——TA
by unit law for T by associativity law for T.
And Ff is a map of algebras:
TZ
T’ A 7, T°B
TA———TB
f

by naturality of p.
2 The functoriality of F follows from that of T.

3 We need to show that
TB
C"[FA, |o | =CAB)
B
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naturally in A and B. We construct an isomorphism as follows:

a Given a map of algebras in the LHS
T°A——TB
TA ——B,

we take A -5 TA —B€ @ (A, B). Naturality follows from that of #.

b Given a morphism A I, Bin the RHS, we construct an algebra map

TZ
rA 1"
HAl l#ﬂ l@
TA 7 TB 5 B

The left hand square commutes by naturality of y; the right hand square commutes by
the second T-algebra axiom. Hence the outside square commutes, i.e. it is a map of
algebras.

¢ We show that these are mutually inverse:

- Starting with f: A — B on the RHS, we get taken to 6 o Tf on the left hand side, and
thence to 8 o Tf o 114. So we need to show 8o Tf o 4 = f. We have:

T
A A g
’13[/
f s
B

The left hand square commutes by naturality of # and the right hand triangle by the
first T-algebra axiom. So we are done.

» Starting with ¢g: TA — B on the LHS, we go to go 74 and then to 6 o T(g o 774). This

time we have:
Tna Tg 0

TA T2A TB B
lﬂA /
1 TA g

TA

where the left hand triangle commutes by the unit law for 7, and the right hand
square commutes since g is a T-algebra map.

So we have our adjunction as required. g

PROPOSITION 7.3.2

The adjunction F H U gives rise to the monad (T, #, 4).
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PROOF

Recall that the adjunction (F, U, /, ) gives rise to a monad (UF, 1/, U¢F). So we need to
check that (UF, v/, U¢'F) = (T, 5, ).

1 Itis easy to see that UF = T.

2 Recall the adjunction (CT(FA, TB-YB) = C(A, B) takes gto g o n4. So the unit 7/, is given
by
lpatr— 1pa 04 = 44

as required.

3 Recall

TB TB
ClAU|[ Jo||=C"|FA o
B B

has f+— 0 o Tf. So the counit €} at X = TB Y Bis given by
1UX}—>80 T1I =106

T’ A
We need to show Usepy = pa. But FA = | |m [ so Uepy = pg as required.
TA

8 - Monadicity
8.1 - Introduction
DEFINITION 8.1.1

Given a monad T: € — €, we define a category Adj T with

F
+ objects ¢, L D inducing T;
G
+ morphisms D, such that F, = DF; and G; = G,D.

%
a
C D
F

N
D,
It is possible to show that in fact FT < U7 is a terminal object in Adj T; so given F - G, we get
a unique morphism K in Adj GF:
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LECTURE 21 - 27/11/02

8.2 - Eilenberg-Moore Comparison Functor
DEFINITION 8.2.1

Given an adjunction F 4 G: D — C, the Eilenberg-Moore comparison function K is the
unique morphism K in Adj GF:

and is given by:

GFGY
- onobjects, KY = | Ger
GY

. f GFGf
+ on morphisms, K(Y — Z) = GFGY ——GFGZ,

Gey Gez

GY ——GZ
Gf

We need to check that K is in fact well defined; i.e. that KY is an algebra and that Kf is a map
of algebras. For KY we have

GY — ., TGY
1GY GSy
GY

which commutes by the first triangle identity, and

Gercy

; GFGFGY — GFGY
76y 5 TGY
TGSY Gey = GFGey Gey
TGY —GY
Gey GFGY T)GY
€y
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8.3 -

which commutes by naturality of . Similarly for Kf, we have

GFGf
GFGY ——GFGZ,
Gey Gez

GY ————GZ
Gf

commuting by the naturality of . And clearly K is functorial (since G is), and the following
diagrams commute:

D D
C K and C K
er er

DEFINITION 8.2.2

An adjunction F - G is called monadic if the Eilenberg-Moore comparison functor is an
equivalence of categories. A functor G is called monadic if it has a left adjoint Fwith F 4 G
monadic. A category D with an understood forgetful functor D—>C is called monadic over
Cif U is monadic.

EXAMPLES 8.2.3

1 Gp is monadic over Set;

2 Vect is monadic over Set;

3 Cpct Haus is monadic over Set;
4 Top is not monadic over Set;

5 Poset is not monadic over Set.

Monadicity theorems

Suppose we have an adjunction F 4 G: D — C giving rise to a monad T = GF. Asking
whether F 4 G is monadic is essentially asking when D “looks like” €T, and when G “looks
like” U”. So what do €T and U actually look like?

FACTS

1 Every algebra is a coequaliser of free algebras. Intuitively we can see this from “ordinary”
algebra, where every algebra isa quotient of a free algebra. So monadicity theorems are all
about existence, preservation, reflection and creation of special kinds of coequaliser.

2 UT creates ‘UT-special’ coequalisers. In fact this property characterises monadicity. Hence
we arrive at our first attempt at a monadicity theorem:

THEOREM
G is monadic iff G creates G-special coequalisers.

Look more closely at (1). We want D to be like CT. So certainly we would like every object in
D to be a coequaliser of free objects, i.e. objects of the form FX. This says that “the objects we
do have look like algebras”, i.e. that K is full and faithful.
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8.4 -

We also need to show that we “have all of them”, i.e. that K is essentially surjective. So does K
hit all of the coequalisers? That is, can we find something in D which goes to each coequaliser?
Well, if D has all the “special coequalisers” and G preserves them, then we can lift along U7,
so seeing that K sends it to the right place. Hence we get

THEOREM

F - G is monadic iff D has and G preserves G-very-special coequalisers, and every object
of D is a coequaliser of free ones.

. . . . . . . . . ErGY &y
Can we avoid mentioning free objects in D? In fact, the coequaliser in question is ——=—;
FGSY

and G of this is a coequaliser in C, so it suffices to prove that G reflects these. So K is full and
faithful iff G reflects G-very-special coequalisers. Hence

THEOREM

G is monadic iff D has and G preserves and reflects G-very-special-coequalisers.

Background on coequalisers

DEFINITION 8.4.1

f
A split coequaliser is a fork A ——3 B -5 C (i.e. ef = eg) with a splitting
g

N~

N

f
A——B——C
NE
t
such that es = 1, ft = 1p and gt = se.
PROPOSITION 8.4.2
A split coequaliser is a coequaliser.

PROOF

f
Suppose we have a fork A ——= B b, say, so that hf = hg. We need to show that there
g

exists a unique C &, D such that

commutes. Now consider hs: C — D. We have
hse = hgt

= hft
=h

so hs certainly makes the diagram commute. And suppose k is any other such; then

ke=h=hse = kes=hses = k=hs
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so hs is the unique such. g
DEFINITION 8.4.3

An absolute coequaliser is a coequaliser that is preserved as a coequaliser by any functor.
PROPOSITION 8.4.4

A split coequaliser is an absolute coequaliser.
PROOF

A split coequaliser is defined entirely by a commutative diagram. O
PROPOSITION 8.4.5

TA
For any T-algebra |6, the following is a split coequaliser:
A

2, M 6
T?A——TA %A
T8

PROOF

We exhibit a splitting "N For:
A

NrA

1 014 = 14 by the unit axiom for T-algebras.
2 pafira = l7a by the unit axiom for the monad T.
3 T0o npa = 14 o 0 by the naturality of . 4

DEFINITIONS 8.4.6

f
+ An absolute coequaliser pair is a pair — 3 that has an absolute coequaliser.
g
Gf
+ A G-absolute coequaliser pair is a pair f, g such that — = has an absolute coequaliser.
G
f g
A split coequaliser pair is a pair — that has a split coequaliser.
g

Gf
A G-split coequaliser pair is a pair f, g such that — has a split coequaliser.
Gg

In our earlier terminology, a “G-special coequaliser” is a coequaliser of a G-absolute-coequaliser
pair. and a “G-very-special coequaliser” is a coequaliser of a G-split-coequaliser pair.

PROPOSITION 8.4.7

erc
FGFGY % FGY is a G-split coequaliser pair.

FGey
PROOF
GFGY
Recall KY = iGSY is an algebra. Hence by previous result
GY
Gergy Gey
GFGFGY ——= GFGY — GY

GFGey

is a split coequaliser. g
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LECTURE 22 - 29/11/02

8.5 - Beck’s Monadicity Theorem
THEOREM 8.5.1
Let F 4 G: D — C. Then the following are equivalent:

1 The adjunction is monadic;
2 G creates coequalisers for all G-absolute-coequaliser pairs;
3 D has coequalisers of all G-split coequaliser pairs, and G preserves and reflects them.

To prove this, we shall first prove a series of propositions.
PROPOSITION 8.5.2

UT: @T — € creates coequalisers for all UT-absolute-coequaliser pairs.
PROOF

f
A UT-absolute-coequaliser pair is a pair of morphisms A——B such that
g

Tf
TA —=TB
Tg
f
A—/——B

g
f f

“serially commutes”, and such that A~ B has an absolute coequaliser A———B->Cin C.
g g

We aim to show that there is a unique lift to a fork

Tf Te
TA —=2TB——TC

Tg

Gh B‘P Nﬂ
f e

A g:B —C

in T, and that it is a coequaliser in € T

1 Induce unique ¥ by the universal property of coequaliser; the bottom fork is an absolute
coequaliser, hence preserved by T; so the top fork is also a coequaliser. Now,

eopoTf=eofoll=eogob=cogpoTyg
so this induces a unique ¥ making the right hand square commute.

2 We show that TC % Cisan algebra. For the first axiom, consider the diagram:

B - C
X He
Ic
s gy p— TC
B C
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We need to show the right hand triangle commutes. But everything else commutes, and

e is epic (since a coequaliser). Hence the right hand triangle commutes. Similarly, for the
second axiom, consider:

B I TC
Ty TR — % TC
TR — ™ TC v
[ 14
¢
B - C

We need to show the right hand face commutes. But everything else commutes and T?e is
epic (since a coequaliser); hence the right hand square does commute.

3 It remains to check that the given fork is a coequaliser in CT. Consider:

Tf
TA 1 TB e TC
Tg
N B
0 ¢ TY v
[24
f e
A {B C
g :
h otk
Y
where we induce the unique h by the bottom coequaliser. Then since Te is epic, the right
hand square commutes, exhibiting & as a unique factorisation in 7 as required. g

PROPOSITION 8.5.3

For any algebra TA 2, A, the following diagram is a coequaliser in CT:

TMA T@
T3A —=T?A ——TA
20
#mh BW 0
U
T2A %TA A

PROOF

Observe that this diagram serially commutes, i.e. it is a fork. Also note that UT of it is an

absolute coequaliser (by Prop 8.4.5). Since U creates and in particular reflects coequalisers
for UT-absolute coequaliser pairs, this fork must itself be a coequaliser. O
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PROPOSITION 8.5.4

K is full and faithful iff the following diagram is a coequaliser for all A € D:

2 €
FGFGA —= FGA % A
FGEA

PROOF

The right hand side says: given any m: FGA — B such that m o egga = m o FGey,, there
exists a unique f: A — B such that f o ¢4 = m. The left hand side says:

K: D(A, B) — CT(KA, KB)
f=Gf

is a bijection for all A, B € D (recall Kf = Gf). That is, given any h: KA — KB, there is a
unique f: A — Bsuch that h = Gf. But:

CLAIM
A map h: KA — KB is precisely a map GA 1y GB such that i o erca = h o FGe,.
PROOF

Such an & makes

GFGA - ,GFGB
Gea Gep
h

GA—GB

commute; i.e. h o Ge4, = Geg o GFH. Now:

GFGA % GAa I B
FGFGA = Fca - GB
along the leftish leg, and
GFGA ¥ Grca ™ GrGB <% GB
FGFGA = Frca ™ FreB * B

along the rightish one; but eg o Fh = h, so the condition becomes h 0 epgy = h o
FG&L O

But now, under adjunction, h: GA — GB becomes h: FGA — B, and Gf: GA — GB
becomes foes: FGA — B. Hence, the left hand side statement becomes: given any h: FGA
— B such that & o egg4 = h o FGey, there exists unique f: A — B such that h= foea
which is precisely the right hand side statement. O

PROPOSITION 8.5.5
K is full and faithful if G reflects coequalisers for all G-split coequaliser pairs.

PROOF

€
G of FGFGA % FGA is a split coequaliser by 8.4.7. So if G reflects such coequalisers,
FGSA

then this fork is a coequaliser. And hence K is full and faithful by the previous result.  [J
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PROPOSITION 8.5.6

If D has and G preserves coequalisers for all G-split coequaliser pairs, then K is essentially
surjective.

PROOF

Given any algebra TA 2, A, we seek Y € D such that KY = TA -% A in CT. Recall that
Tha T8
T°A — T°A——TA
26
MTAl ta 0 (1)
Ua
T

is a coequaliser in C7, and that the left hand square is a UT-split coequaliser pair (since the
bottom is a split coequaliser pair by 8.4.5).

Also by 8.4.5, FGFAJA is a G-split coequaliser pair, and K of it is the pair in (1) (since
Ko UT = G).

So it has a coequaliser in D,

£,
FGFA——=FA Y (2
Fo
say. We show that K of this coequaliser is a coequaliser of the same parallel pair we started
with. Recall the following diagram commutes:

G preserves coequalisers of G-split coequaliser pairs; so G of (2) is a coequaliser in C. K
of the pair is a UT-split-coequaliser pair; UT creates coequalisers for such. So K of (2) is a
coequaliser. Hence it must be isomorphic to (1); i.e. KY = (TA ' A). O

We are now in a position to prove Beck’s Monadicity Theorem.
PROOF (OF 8.5.1)

1 = 2: Since U7 creates coequalisers for UT-absolute coequaliser pairs, and K is an equiva-
lence of categories, so the same holds for G.

2 = 3: Immediate from definitions; a split coequaliser is an absolute coequaliser, and “cre-
ates” implies “reflects”; so G preserves and reflects split coequalisers.
Since G creates split coequalisers, D has them. And this was of getting coequalisers in D
does give all the coequalisers we want, so by construction all these are taken to coequalisers
in C.

3 = 1: by Prop 8.5.5 and 8.5.6.
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9.1 -

- Bicategories

Definitions
DEFINITION 9.1.1
A category C is given by:
« DATA:

a collection ob € of objects;

for each A, B, C € ob C, a function

for each pair of objects, a collection of morphisms C(A, B);

CABC: G(B, C) X G(A, B) — G(A, C)

@ flrgofs

for each A € G, a function

ig: C(A A)

* ldA .
« AXIOMS:

- associativity — (hg)f = h(gf);
- unit— fol=f=1of.

DEFINITION 9.1.2
A bicategory B is given by
« DATA:

— acollection ob B of o-cells;
- for each pair A, B of o-cells, a category B(A, B), with

* objects being 1-cells A — B;
f
. . /_\
* morphisms being 2-cells A \\\_\/)B
g

f

LN

* composition A WB ,Boa.

h

- composition: for each A, B, C € B, a functor

CABC: 3(3, C)XB(A, B) —
g, f) -
f
/W\ AT LB |
Y Y
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- identities: for each A € B, a functor

In:1—BAA)
*—A—> A
Iy

- associativity: for all composable f, g, h € B, invertible 2-cells

asgn: (hg)f == h(gf)

natural in f, gand h.
- unit: forall f € B(A, B):

tr: foly = f
[fZIBOf %f

natural in f.
« AXIOMS:

- the associativity pentagon commutes:

((kh)g)f — 21— (k(hg))f

a a

(kh)(gf) k((hg)f)

\/

k(h(gf))

- the unit triangle commutes:

@Df —————3lf)

N

1 If a, v and [ are identities, we have a strict 2-category; for example Cat.
2 A bicategory with one object is called a monoidal category.
3 Set has the structure of a monoidal category.

EXAMPLES 9.1.3

1-object bicategory = > monoidal category
1-cells — objects
2-cells — morphisms

composition of 1-cells > “tensor product” of objects A ® B

In Set we take A ® B = A X B the usual Cartesian product. Then a: A X (B X C) ==
A X (B x C); and we take I to be an object such that A X I = A = I X A; i.e. any one-object
set.

4 There is a bicategory of rings, bimodules and bimodule homomorphisms.

5 Any category can be regarded as a bicategory with trivial 2-cells.
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LECTURE 24 - 05/12/02

9.2 - Slightly higher-dimensional categories
DEFINITION 9.2.1
A monoidal category is a category C equipped with

e afunctor®: € x C— G
« anobject] € ob €

together with natural isomorphisms

aspc: ARB)®C =5 AR (BR® C)
LIQA = A
YW AQI ~~ A

such that the following diagrams commute:

(A®B)®C)®D—25A® BRC)®D

a a

(AR B)® (C® D) AR (B®C)®D)

A® (BR®(C®D))

a

ARI)®B A® (I®B)

®1 110

EXAMPLE 9.2.2
Given any category C we can form a monoidal category from it:
+ objects are finite lists (xy, ..., x,) of objects of C;
+ morphisms (xy, ..., Xp) M 1«5 Ym) With fi: xi — ;.

Iis the empty list, and ® is concatenation of lists. This is known as the “free strict monoidal
category on C”.

We can draw morphisms as

X1, X2 ooes X
lfl |/f2 |/fm
yl) )’2, e ym

We have seen other examples of monoidal categories; for instance, Set with A ® B = A X B.
However, in this case we could have equally well chosen to use B X A, since we have A X B =
B X A — a symmetry
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DEFINITION 9.2.3
A symmetry for a monoidal category (C, ®, I, g, t, [) is given by isomorphisms
YaB: A®B =~ B®A

natural in A and B such that the following diagrams commute:

A®BRXC——A® (BX C)
BRAXRC BRICOKA

1Q
B®AR®C) ——B® (CQA)

A®I%I®A

N

AQB——B®A
\ {y
1
A®B
We call such a category a symmetric monoidal category.
EXAMPLE 9.2.4

Let C be the category with objects the natural numbers and morphisms given by

Sh n=
Cn, m) = e
I n#m
So we can draw morphisms as
5
5

and we can compose them. Now, we can make € into a symmetric monodial category by
defining ® on objects to be addition (a strictly associative map!), I to be 0, and y,,, given
by

n m
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We define ® on morphisms to be juxtaposition of permutations; for example

4 2 6

And our axioms say

A B C A B C A B A B

= and =

which is ‘pictorially obvious’. In fact, any two morphisms that are ‘pictorially the same’ are
the same.

EXAMPLE 9.2.5

Just as for monoidal categories, we can form the “free strictly associative symmetrical
monoidal category” on a category C. The objects are finite lists, and the morphisms are
as in the previous example, but labelled by morphisms of C; for example

X X.

1 2 3 4

\L/) 5\ Jh

X X

i Y2 Vs s

Note that we do not distinguish over- and under-crossings. But we could; so we would have

diagrams that looked like

/7

That is, instead of our symmetry being

A B A B

itis
\

70



Note that one of the axioms for a symmetry does not now hold; we still have

A B C A B A B

RER

DEFINITION 9.2.6

A braided monoidal category is a monoidal category equipped with a braiding; that is, iso-
morphisms
Qm:A@@B—ﬁBégA

A B

natural in A and B, and denoted by X , such that

A\LL .A\i.g AL\L \
NN =Y
\ \ \ \

Note that we have another braiding

A B

ro_ =1 ; /
Cap = Cga Le. X

but in general ¢ # ¢’; if the two are equal, then we in fact have a symmetry.

Note that in the symmetric case we did not have to specify both of the above axioms, as one
was the inverse of the other.

REMARK

As before, we can form a “free braided monoidal category” on € by labelling strands. Then
to check that diagrams commute we check each strand and check that the underlying
braids are the same.
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