CATEGORY THEORY

Dr E. L. Cheng
e.cheng@dpmms.cam.ac.uk
http://www.dpmms.cam.ac.uk/~elgc2 • Michaelmas 2002

1 - Categories, functors and natural transformations
1.1 - Categories

DEFINITION 1.1.1
A category \mathcal{C} consists of:

- a collection of objects, ob \mathcal{C};
- For every pair $X, Y \in$ ob \mathcal{C}, a collection $\mathcal{C}(X, Y)=\operatorname{Hom}_{\mathcal{C}}(X, Y)$ of morphisms $f: X \rightarrow Y$, equipped with:
- for each $X \in \mathrm{ob} \mathcal{C}$, an identity map $\operatorname{id}_{X}=1_{X} \in \mathcal{C}(X, X)$;
- for each $X, Y, Z \in \mathrm{ob} \mathcal{C}$, a composition map

$$
\begin{aligned}
m_{X Y Z}: \mathcal{C}(Y, Z) \times \mathcal{C}(X, Y) & \rightarrow \mathcal{C}(X, Z) \\
(g, f) & \mapsto g \circ f=g f,
\end{aligned}
$$

satisfying:

- unit laws - if $f: X \rightarrow Y$ then $1_{Y} \circ f=f=f \circ 1_{X}$
- associativity - if $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$, then $h(g f)=(h g) f$.

A category is said to be small if ob \mathcal{C} and all of the $\mathcal{C}(X, Y)$ are sets, and locally small if each $\mathcal{C}(X, Y)$ is a set.

REMARKS

1 If $f \in \mathcal{C}(X, Y)$, we say that X and Y are the domain (or source) and the codomain (or target) of f.
2 Morphisms are also referred to as maps or arrows.
3 We can write Home for the collection of all morphisms.
4 It is convenient and customary to assume that the $\mathcal{C}(X, Y)$ are disjoint for distinct pairs (X, Y).
5 We don't worry ourselves with the niceties of set theory.
DEFINITION 1.1.2
A category \mathcal{C} is called discrete if the only morphisms are identities; i.e.

$$
\mathcal{C}(X, Y)= \begin{cases}\left\{1_{X}\right\} & \text { if } X=Y \\ \varnothing & \text { otherwise }\end{cases}
$$

EXAMPLES 1.1.3
1 Large categories of mathematical structures:
a Set of sets and functions.
b Categories derived from or related to Set:

- Pfn of sets and partial functions;
- Rel of sets and relations;
- Set ${ }_{*}$ of pointed sets and base point preserving functions.
c Algebraic structures and structure-preserving maps:
- Grp of groups and group homomorphisms;
- Ab of abelian groups and group homomorphisms;
- Ring of rings and ring homomorphisms;
- Vec of vector spaces over \mathbb{R};
- Mat of natural numbers and $n \times m$ matrices.
d Topological categories:
- Top of topological spaces and continuous maps;
- Haus of Hausdorff spaces and continuous maps;
- Met of metric spaces and uniformly continuous maps;
- Htpy of topological spaces and homotopy classes of maps.

2 Mathematical structures as categories:
a Posets: a poset (P, \leqslant) can be regarded as a category \mathcal{C} with objects the elements of P and precisely one morphism $x \rightarrow y$ when $x \leqslant y$ and none otherwise.
b Monoids: a category with just one object is a monoid.
c Groups: a group G can be regarded as a category with just one (formal) object and whose morphisms are the elements of G.
3 Small categories can be presented by generators and relations. From a directed graph we can generate a category of "paths through the graph" and then add relations imposing equalities between some paths with the same domain and codomain.
a There is a category o with no objects and no morphisms, generated by the empty graph.
b There is a category $\mathbf{1}$ with one objects and one (identity) morphism, generated by the graph with just one vertex.
c There is a category generated by the graph with one vertex and one edge. It is isomorphic to the additive monoid \mathbb{N}.
d There is a category generated by the graph with one vertex and one edge s say, together with the relation $s^{2}=1$. It has one object and two morphisms and is isomorphic to the cyclic group of order 2.
e There is a category generated by the graph with two vertices and one edge between them. It has two objects and three morphisms and is isomorphic to the poset $\mathbf{2}=\{0 \leqslant$ $1\}$.
1.2 • Universal properties

DEFINITION 1.2.1
A morphism $f \in \mathcal{C}(X, Y)$ is an isomorphism if $\exists g \in \mathcal{C}(Y, X)$ such that $g f=1_{X}$ and $f g=1_{Y}$. We say g is an inverse for f.

PROPOSITION 1.2.2
If g_{1} and g_{2} are inverses for f, then $g_{1}=g_{2}$.
PROOF

$$
g_{1}=g_{1} \circ 1_{Y}=g_{1} \circ\left(f \circ g_{2}\right)=\left(g_{1} \circ f\right) \circ g_{2}=1_{X} \circ g_{2}=g_{2}
$$

PROPOSITION 1.2.3
1 The identity map is an isomorphism.
2 The composition of two isomorphisms is an isomorphism.
PROOF
11_{X} is clearly self-inverse.
2 Let $f \in \mathcal{C}(Y, Z), g \in \mathcal{C}(X, Y)$ be isomorphisms, with respective inverses $h \in \mathcal{C}(Z, Y), k \in$ $\mathcal{C}(Y, X)$. Then we claim that $f g \in \mathcal{C}(X, Z)$ is an isomorphism, with inverse $k h \in \mathcal{C}(Z, X)$. For

$$
\begin{aligned}
& (f g)(k h)=f(g k) h=f\left(1_{Y}\right) h=f h=1_{Z} \\
& (k h)(f g)=k(h f) g=k\left(1_{Y}\right) g=k g=1_{X}
\end{aligned}
$$

so we have the desired result.
DEFINITION 1.2.4
A terminal object in \mathcal{C} is an element $T \in$ ob \mathcal{C} such that $\forall X \in \mathcal{C}, \exists$! morphism $X \xrightarrow{k} T$.
EXAMPLE
In Set, every 1-element set is terminal. So sometimes we denote a terminal object by 1 .
PROPOSITION 1.2.5
Suppose 1 and 1^{\prime} are terminal in \mathcal{C}. Then there exists a unique isomorphism $f \in \mathcal{C}\left(1,1^{\prime}\right)$. PROOF

Since 1^{\prime} is terminal, there is a unique morphism $f: 1 \rightarrow 1^{\prime}$. Similarly, 1 is terminal, so there is a unique morphism $f^{\prime}: 1^{\prime} \rightarrow 1$. Now consider $f^{\prime} \circ f \in \mathcal{C}(1,1)$. Since 1 is terminal, there is a unique morphism $1 \rightarrow 1$, i.e. the identity. So $f^{\prime} \circ f=\operatorname{id}_{1}$; similarly $f \circ f^{\prime}=\operatorname{id}_{1^{\prime}}$. Hence f is the desired unique isomorphism.

```
DEFINITION 1.2.6
```

Given $A, B \in \mathrm{ob} \mathcal{C}$, a product of A and B is an object $A \times B$ equipped with projections

such that for all $f: C \rightarrow A, g: C \rightarrow B, \exists!$ morphism $(f, g): C \rightarrow A \times B$ such that $p \circ(f, g)=$ f and $q \circ(f, g)=g$; i.e. such that

commutes.

EXAMPLE

In Set, $A \times B=\{(a, b) \mid a \in A, b \in B\}$ with p, q the first and second projections.

Note however, that we could also have taken p, q to be the second and first projections, or the set to be $\{(b, a) \mid b \in B, a \in A\}$.

PROPOSITION 1.2.7

If

are products of $A, B \in \mathcal{C}$, then \exists ! isomorphism $k: D \rightarrow D^{\prime}$ such that $q^{\prime} k=q$ and $p^{\prime} k=p$. PROOF

Consider the diagrams

By our definition of product, k is the unique morphism $D \rightarrow D^{\prime}$ s.t. these diagrams commute; so $q^{\prime} k=q$ and $p^{\prime} k=p$ certainly.

We claim that k^{\prime} is an inverse for k. For consider $k \circ k^{\prime}: D^{\prime} \rightarrow D^{\prime}$. We have

$$
\begin{aligned}
p^{\prime} \circ\left(k \circ k^{\prime}\right) & =\left(p^{\prime} \circ k\right) \circ k^{\prime}=p \circ k^{\prime}=p^{\prime} \\
q^{\prime} \circ\left(k \circ k^{\prime}\right) & =\left(q^{\prime} \circ k\right) \circ k^{\prime}=q \circ k^{\prime}=q^{\prime}
\end{aligned}
$$

Hence

commutes. But by the definition of product, there is a unique morphism $D^{\prime} \rightarrow D^{\prime}$ that makes this diagram commute, i.e. the identity. So $k \circ k^{\prime}=\mathrm{id}_{D^{\prime}}$. Similarly $k^{\prime} \circ k=\mathrm{id}_{D}$. So k is indeed an isomorphism, and is the unique one s.t. $q^{\prime} k=q$ and $p^{\prime} k=p$.

DEFINITION 1.2.8

If $\forall A, B \in \mathcal{C}$, there exists a product $A \times B$, we say \mathcal{C} has all binary products.

PROPOSITION 1.2.9

If \mathcal{C} is a category with binary products, then given $f \in \mathcal{C}(A, C), g \in \mathcal{C}(B, D)$, there exists a unique morphism $f \times g \in \mathcal{C}(A \times B, C \times D)$ such that

commutes.
proof
Immediate from definition of product.

DEFINITION 1.2.10

Suppose \mathcal{C} is a category with binary products. Given $B, C \in$ ob \mathcal{C}, a function space or exponential is an object C^{B} equipped with an evaluation morphism ε : $C^{B} \times B \rightarrow C$ such that $\forall f: A \times B \rightarrow C, \exists!\bar{f}: A \rightarrow C^{B}$ such that

commutes, i.e. $\varepsilon \circ\left(\bar{f} \times 1_{B}\right)=f$.
In Set, $C^{B}=\{f: B \rightarrow C\}=[B, C]$. There is an evaluation map

$$
\begin{aligned}
\varepsilon: C^{B} \times B & \rightarrow C \\
(g, b) & \mapsto g(b) .
\end{aligned}
$$

Given $f: A \times B \rightarrow C$, fix $a \in A$ to get

$$
\begin{aligned}
f_{a}: B & \rightarrow C \\
b & \mapsto f(a, b) .
\end{aligned}
$$

So we have a function

$$
\begin{aligned}
\bar{f}: A & \rightarrow C^{B} \\
a & \mapsto f_{a}
\end{aligned}
$$

such that

$$
\begin{aligned}
f(a, b) & =f_{a}(b) \\
& =\varepsilon\left(f_{a}, b\right) \\
& =\varepsilon \circ\left(\bar{f} \times 1_{B}\right)(a, b) .
\end{aligned}
$$

So $\varepsilon \circ\left(\bar{f} \times 1_{B}\right)=f$ as required.

DEFINITION 1.3.1
A subcategory \mathcal{D} of \mathcal{C} consists of subcollections

- ob $\mathcal{D} \subseteq \mathrm{ob} \mathrm{C}$;
- $\operatorname{Hom}_{\mathcal{D}} \subseteq \operatorname{Hom}_{\mathcal{C}}$,
together with composition and identities inherited from \mathcal{C}. We say \mathcal{D} is a full subcategory of \mathcal{C} if $\forall X, Y \in \mathcal{D}, \mathcal{D}(X, Y)=\mathcal{C}(X, Y)$, and a lluf subcategory of \mathcal{C} if $\operatorname{ob} \mathcal{C}=o b \mathcal{D}$.

We can think of the data for a category as

$$
\operatorname{Hom}_{\mathcal{C}} \xrightarrow[c_{2}]{\stackrel{c_{1}}{\longrightarrow}} \mathrm{obC}
$$

We could have c_{1} giving us the domain of a morphism and c_{2} the codomain, or vice verse. This motivates the definition:

```
DEFINITION 1.3.2
```

Given a category \mathcal{C}, the dual or opposite category $\mathcal{C}^{\text {op }}$ is defined by:-

- ob $\bigodot=$ ob $\complement^{\text {op }}$;
- $\mathcal{C}(X, Y)=\mathcal{C}^{\text {op }}(Y, X)$;
- identities inherited;
- $f^{\mathrm{op}} \circ g^{\mathrm{op}}=(g \circ f)^{\mathrm{op}}$.

THE PRINCIPLE OF DUALITY

Given any property, feature or theorem in terms of diagrams of morphisms, we can immediately obtain its dual by reversing all the arrows (this is often indicated by the prefix "co-").

```
EXAMPLES 1.3.3
```

1 The dual notion of a terminal category object is an initial object. That is, an object $I \in \mathcal{C}$ such that for all $Y \in \mathcal{C}$, there exists a unique $f: I \rightarrow Y$. For example, the (unique) initial object in Set is \varnothing; we sometimes write 0 for an initial object.

2 The dual of a product is a coproduct:

where p, q are coprojections such that, for any $f \in \mathcal{C}(A, C), g \in \mathcal{C}(B, C), \exists!h: A \amalg B \rightarrow C$ such that

commutes.
DEFINITION 1.3.4
A morphism $A \xrightarrow{m} B$ is monic iff given any $f, g: C \rightarrow A$, we have $m f=m g \Rightarrow f=g$. Dually, a morphism $A \xrightarrow{e} B$ is epic iff given any $f, g: B \rightarrow C$, we have $f e=g e \Rightarrow f=g$.

It is easy to see that any isomorphism is epic and monic. In Set, a morphism is monic iff it is injective, and epic iff it is surjective.

```
DEFINITION 1.3.5
```

Given \mathcal{C} a category and $X \in \mathrm{ob} \mathcal{C}$, then the slice over $X, \mathcal{C} / X$ is the category with:

- objects (Y, f), where $f: Y \rightarrow X \in \mathcal{C}$;
- morphisms $h:\left(Y_{1}, f_{1}\right) \rightarrow\left(Y_{2}, f_{2}\right)$ such that

commutes, i.e. $f_{2} h=f_{1}$.
Dually, we have the slice under $X, X / \mathcal{C}$, with:
- objects (Y, f), where $f: X \rightarrow Y \in \mathcal{C}$;
- morphisms $h:\left(Y_{1}, f_{1}\right) \rightarrow\left(Y_{2}, f_{2}\right)$ such that

commutes, i.e. $h f_{1}=f_{2}$.
We have a terminal object $\left(X, 1_{X}\right)$ in \mathcal{C} / X and dually an initial object $\left(X, 1_{X}\right)$ in X / \mathcal{C}.

1.4 • Functors

DEFINITION 1.4.1
Let \mathcal{C} and \mathcal{D} be categories. A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ associates

- with each $X \in \mathrm{ob} \mathcal{C}$, an object $F X \in \mathrm{ob} \mathcal{D}$;
- with each $f \in \mathcal{C}(X, Y)$, a morphism $F f \in \mathcal{D}(F X, F Y)$,
such that
- $F 1_{X}=1_{F X}$;
- $F(g f)=F g \circ F f$.

DEFINITION 1.4.2
We define the category Cat of small categories:-

- For any category \mathcal{C} there is an identity functor

$$
\begin{aligned}
1_{\mathcal{C}}: \mathcal{C} & \rightarrow \mathcal{C} \\
X & \mapsto X \\
f & \mapsto f
\end{aligned}
$$

- Composition of functors $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \varepsilon$ with $G F$ defined in the obvious way.

Similarly we have CAT, the category of large categories and functors.

```
EXAMPLES 1.4.3
```

1 Cat has an initial object 0 .
2 Cat has a terminal object 1.
3 Cat has products; given $\mathcal{C}, \mathcal{D} \in$ ob Cat, we have the product $\mathcal{C} \times \mathcal{D}$ with

- objects $(c, d), c \in \mathcal{C}, d \in \mathcal{D}$;
- morphisms $(f, g), f: c \rightarrow c^{\prime} \in \mathcal{C}, g: d \rightarrow d^{\prime} \in \mathcal{D}$.

DEFINITION 1.4.4

A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is faithful/full/full and faithful if $\mathcal{C}(X, Y) \rightarrow \mathcal{D}(F X, F Y)$ is injective/ surjective/an isomorphism.

EXAMPLES 1.4.5
1 Functors between collections of mathematical objects:
a forgetful functors:

$$
\begin{aligned}
\text { Gp } & \rightarrow \text { Set } \\
\text { Ring } & \rightarrow \text { Set } \\
\text { Ring } & \rightarrow \text { Ab } \\
\text { Haus } & \rightarrow \text { Top; }
\end{aligned}
$$

b free functors:

$$
\begin{aligned}
& \text { Set } \rightarrow \text { Gp } \\
& \text { Set } \rightarrow \text { Mnd; }
\end{aligned}
$$

c inclusion of subcategories:

$$
\begin{aligned}
\mathbf{A b} & \rightarrow \mathbf{G p} \\
\text { Haus } & \rightarrow \text { Top. }
\end{aligned}
$$

2 Functors between mathematical structures:
a posets $f:(P, \leqslant) \rightarrow(Q, \preccurlyeq)$ is an order-preserving map;
b groups $f: G \rightarrow H$ is a group homomorphism.
3 Presheaves - a functor $\mathcal{C}^{o p} \rightarrow$ Set is called a presheaf on \mathcal{C}.
4 Diagrams - a functor $\mathcal{C} \rightarrow$ Set is called a diagram on \mathcal{C}.
Note that a functor will preserve any property that is expressible as a commutative diagram. For example, isomorphisms are preserved by all functors; if f is an isomorphism, then $F f$ is also.

PROPOSITION

If F is full and faithful, then $F f$ isomorphic $\Leftrightarrow f$ isomorphic.

PROOF

Let $f \in \mathcal{C}(X, Y)$ such that $F f$ is an isomorphism. Then \exists inverse $g^{\prime} \in \mathcal{D}(F Y, F X)$ for $F f$. Since F is full, then $\exists g \in \mathcal{C}(Y, X)$ such that $g^{\prime}=F g$. But now

$$
F(f g)=(F f)(F g)=1_{F Y}
$$

And $F\left(1_{Y}\right)=1_{F Y}$, so since F is faithful, we have $f g=1_{Y}$. Similarly $g f=1_{X}$. So g is an inverse for $f \in \mathcal{C}(X, Y)$, i.e. f is an isomorphism.
1.5 - Contravariant functors

DEFINITION 1.5.1
A contravariant functor $\mathcal{C} \rightarrow \mathcal{D}$ is a functor $\complement^{\mathrm{op}} \rightarrow \mathcal{D}$. That is:

- on objects, $X \mapsto F X$;
- on morphisms, $X \xrightarrow{f} Y \mapsto F Y \xrightarrow{F f} F X$;
- identities are preserved;
- $F(g \circ f)=F f \circ F g$.

A non-contravariant functor is sometimes referred to as a covariant functor.
1.6 - The Hom functor

1.6.1 - REPRESENTABLES

Let \mathcal{C} be a locally small category. We have a contravariant functor H_{U} or $\mathcal{C}(,, U)$:

$$
\begin{array}{rlrl}
H_{U}: & \mathcal{C}^{\mathrm{op}} & \rightarrow \text { Set } \\
X & \mapsto & \mathcal{C}(X, U) \\
X & & \mathcal{C}(X, U) & g \\
f \downarrow & \mapsto & \underset{\mathcal{C}}{ }(1, g) & \underset{I}{I} \\
Y & & \mathcal{C}(Y, U) & g f
\end{array}
$$

Dually, we have a covariant functor H^{U} or $\mathcal{C}\left(U,,_{-}\right)$:

$$
\begin{aligned}
& H^{U}: \mathcal{C} \rightarrow \text { Set } \\
& X \mapsto \mathcal{C}(U, X)
\end{aligned}
$$

These are known as representables.

1.6.2 - THE Hom functor

Again, take \mathcal{C} locally small. Then we have a functor

$$
\begin{array}{rlll}
H: \mathcal{C}^{\text {op }} \times \mathcal{C} & \rightarrow \text { Set } \\
(X, Y) & \mapsto & \mathcal{C}(X, Y) \\
(X, Y) & & \mathcal{C}(X, Y) & \\
(f, g) \mid & \mapsto & \downarrow \mathcal{C}(f, g) & I \\
\left(X^{\prime}, Y^{\prime}\right) & & \mathcal{C}\left(X^{\prime}, Y^{\prime}\right) & g h ̆ f
\end{array}
$$

where $f: X \rightarrow X^{\prime} \in \mathcal{C}^{\text {op }}$ and $g: Y \rightarrow Y^{\prime} \in \mathcal{C}$.

Natural transformations

DEFINITION 1.7.1
Let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be functors. A natural transformation $\alpha: F \rightarrow G$ is a collection of morphisms (known as components)

$$
\left\{\alpha_{X}: F X \rightarrow G X \mid X \in \mathcal{C}\right\}
$$

such that, $\forall f: X \rightarrow Y \in \mathcal{C}$,

commutes (the naturality condition).

DEFINITION 1.7.2

Given categories \mathcal{C} and \mathcal{D}, we define the (larger) category $[\mathcal{C}, \mathcal{D}]$ where:

- objects are functors $F: \mathcal{C} \rightarrow \mathcal{D}$;
- morphisms are natural transformations $\alpha: F \rightarrow G$,
such that:
- identities are natural transformations $1_{F}: F \rightarrow F$ (for any $F: \mathcal{C} \rightarrow \mathcal{D}$ with components $F X \xrightarrow{1_{F X}} F X$;
- for composition, given $F \xrightarrow{\alpha} G \xrightarrow{\beta} H$, then $\beta \circ \alpha$ is the natural transformation with components

$$
(\beta \circ \alpha)_{X}: F X \xrightarrow{\beta_{X} \circ \alpha_{X}} H X .
$$

So, for example, $[\mathcal{C}, \mathcal{D}](F, G)$ is a collection of natural transformations $F \rightarrow G$.

```
DEFINITION 1.7.3
```

A natural isomorphism $\alpha: F \rightarrow G$ is an isomorphism in the functor category; i.e. there exists $\beta: G \rightarrow F$ such that $\alpha \circ \beta=1_{G}$ and $\beta \circ \alpha=1_{F}$. Note that two natural transformations are equal iff all their components are.

PROPOSITION 1.7.4
$\alpha: F \rightarrow G$ is a natural isomorphism iff each component $\alpha_{X}: F X \rightarrow G X$ is an isomorphism in \mathcal{D}.

```
PROOF
```

Suppose α is a natural isomorphism, and let β be its inverse. Then

$$
\alpha \circ \beta=1_{G} \quad \Rightarrow \quad(\alpha \circ \beta)_{X}=1_{G X} \quad \Rightarrow \quad \alpha_{X} \circ \beta_{X}=1_{G X}
$$

and

$$
\beta \circ \alpha=1_{F} \quad \Rightarrow \quad(\beta \circ \alpha)_{X}=1_{F X} \quad \Rightarrow \quad \beta_{X} \circ \alpha_{X}=1_{F X} .
$$

So β_{X} is an inverse for α_{X} for each $X \in \mathcal{C}$. Thus each component is an isomorphism in \mathcal{D}.
Conversely, if each component α_{X} is an isomorphism, then let β_{X} be the corresponding inverses for each $X \in \mathcal{C}$. Now, given $f \in \mathcal{C}(X, Y)$, we have that

commutes; i.e. $(G f) \circ \alpha_{X}=\alpha_{Y} \circ(F f)$. But now:-

$$
\begin{aligned}
\beta_{Y} \circ(G f) \circ \alpha_{X} \circ \beta_{X} & =\beta_{Y} \circ \alpha_{Y} \circ(F f) \circ \beta_{X} \\
\text { so } \quad \beta_{Y} \circ(G f) \circ 1_{G X} & =1_{F Y} \circ(F f) \circ \beta_{X} \\
\text { so } \quad \beta_{Y} \circ(G f) & =(F f) \circ \beta_{X} ;
\end{aligned}
$$

hence

commutes; so we can legitimately define the natural transformation β with components β_{X}. And clearly β is an inverse for α, so α is a natural isomorphism.
We can prove similar results that tell us that α is epic/monic iff all its components are.

1.8 - The 2-category Cat

DEFINITION 1.8.1

We define "horizontal composition" of natural transformations. We have seen "vertical composition" already:

But we can also compose:

We define $(\beta * \alpha)_{X}: H F X \rightarrow K G X$ by

$$
H F X \xrightarrow{H \alpha_{X}} H G X \xrightarrow{\beta_{G X}} K G X
$$

or

$$
H F X \xrightarrow{\beta_{F X}} K F X \xrightarrow{K \alpha_{X}} K G X .
$$

By the naturality of β, these definitions are equivalent:

so we can define

$$
(\beta * \alpha)_{X}=\beta_{G X} \circ H \alpha_{X}=K \alpha_{X} \circ \beta_{F X}
$$

We consider the following particular case:

$$
1_{H} * \alpha: H F \rightarrow H G
$$

which we will (for convenience) write as:

$H \alpha: H F \rightarrow H G$.

Similarly we have:

$\beta F: H F \rightarrow K F$.

PROPOSITION 1.8.2 (THE MIDDLE-4 INTERCHANGE LAW)
Given

we have $\left(\beta^{(2)} \circ \beta^{(1)}\right) *\left(\alpha^{(2)} \circ \alpha^{(1)}\right)=\left(\beta^{(2)} * \alpha^{(2)}\right) \circ\left(\beta^{(1)} * \alpha^{(1)}\right)$.

PROOF

Consider components. We have

$$
\begin{aligned}
{\left[\left(\beta^{(2)} \circ \beta^{(1)}\right) *\left(\alpha^{(2)} \circ \alpha^{(1)}\right)\right]_{X} } & =\left(\beta^{(2)} \circ \beta^{(1)}\right)_{H X} \circ J\left(\alpha^{(2)} \circ \alpha^{(1)}\right)_{X} \\
& =\beta_{H X}^{(2)} \circ \beta_{H X}^{(1)} \circ J \alpha_{X}^{(2)} \circ J \alpha_{X}^{(1)}
\end{aligned}
$$

and

$$
\left[\left(\beta^{(2)} * \alpha^{(2)}\right) \circ\left(\beta^{(1)} * \alpha^{(1)}\right)\right]_{X}=\beta_{H X}^{(2)} \circ K \alpha_{X}^{(2)} \circ \beta_{G X}^{(1)} \circ J \alpha_{X}^{(1)}
$$

So it is sufficient to prove that $K \alpha_{X}^{(2)} \circ \beta_{G X}^{(1)}=\beta_{H X}^{(1)} \circ J \alpha_{X}^{(2)}$. But we have that

commutes (by the naturality of $\beta^{(1)}$), and so we are done.

DEFINITION 1.8.3

We can now define the 2-category Cat, consisting of:

- objects, morphisms and two-cells;
- composition of morphisms;
- horizontal and vertical composition of 2-cells;
- axioms - unit, associativity and middle-4 interchange; "any two ways of composing are the same".

DEFINITION 1.8.4

Given categories \mathcal{C} and \mathcal{D}, an equivalence consists of:

- functors $\mathcal{C} \xrightarrow{F} \mathcal{D}, \mathcal{D} \xrightarrow{G} \mathcal{C}$;
- natural isomorphisms $G F \stackrel{\alpha}{\Rightarrow} 1_{\mathcal{C}}, F G \stackrel{\beta}{\Rightarrow} 1_{\mathcal{D}}$.

We call β the inverse up to isomorphism or the pseudo-inverse of α.
DEFINITION 1.8.5
A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is essentially surjective on objects iff $\forall Y \in \mathcal{D}, \exists X \in \mathcal{C}$ such that $F X \cong Y \in \mathcal{D}$.

PROPOSITION 1.8.6
F is an equivalence of categories iff it is essentially surjective and full and faithful.
PROOF
Omitted.

2 - Representability

2.1 • The Yoneda Embedding

Recall that for each $A \in \mathcal{C}$, we have the functor $H_{A}: \mathcal{C}^{\text {op }} \rightarrow$ Set. So we have an assignation $A \mapsto H_{A}$. We can extend this to a functor, known as the Yoneda embedding:-

$$
\begin{aligned}
H_{\bullet}: \mathcal{C} & \rightarrow\left[\mathrm{C}^{\text {op }}, \text { Set }\right] \\
A & \mapsto H_{A} \\
(f: A \rightarrow B) & \mapsto\left(H_{f}: H_{A} \rightarrow H_{B}\right),
\end{aligned}
$$

where H_{f} is the natural transformation with components

$$
\begin{aligned}
\left(H_{f}\right)_{X}: H_{A} X & \rightarrow H_{B} X \\
\text { i.e. } \mathcal{C}(X, A) & \rightarrow \mathcal{C}(X, B) \\
h & \mapsto f \circ h .
\end{aligned}
$$

We need to check that this is a well-defined natural transformation, i.e. that

commutes. But along the two legs we just have:-

so the naturality condition just says that composition is associative.
2.2 - Representable Functors

DEFINITION 2.2.1
A functor $F: \mathcal{C}^{\mathrm{op}} \rightarrow$ Set is representable if it is naturally isomorphic to H_{A} for some $A \in \mathcal{C}$, and a representation for F is an object $A \in \mathcal{C}$ together with a natural isomorphism $\alpha: H_{A} \rightarrow$ F.

Dually, a functor $F: \mathcal{C} \rightarrow$ Set is representable if $F \cong H^{A}$ for some $A \in \mathcal{C}$, and a representation for F is an object A with a natural isomorphism $\alpha: H^{A} \rightarrow F$.

NOTE
The naturality square says, that $\forall f: V \rightarrow W \in \mathcal{C}$,

commutes.
EXAMPLES 2.2.2
1 The forgetful functor $U: \mathbf{G p} \rightarrow$ Set is representable. Take $A=\mathbb{Z}$, and α to be the natural transformation with components:

$$
\begin{aligned}
\alpha_{G}: H^{\mathbb{Z}} G & \rightarrow U G \\
f & \mapsto f(1) .
\end{aligned}
$$

Then we can check that α is natural, and it is an isomorphism, since any homomorphism $f: \mathbb{Z} \rightarrow G$ is completely determined by $f(1)$.
$2 \mathrm{ob}:$ Cat \rightarrow Set is representable. For let A be 1 , the terminal category; then $\mathrm{ob}(\mathcal{C}) \cong$ Cat $(1, \mathcal{C})$ is a natural isomorphism.

Now, we can make a few suggestive observations about natural transformations $\alpha: H_{A} \rightarrow F$. Consider the naturality square

We know this commutes; in particular, for the element $1_{A} \in \mathcal{C}(A, A)$, we have

$$
\alpha_{V}\left(1_{A} \circ f\right)=F f\left(\alpha_{A}\left(1_{A}\right)\right),
$$

so that α is in fact completely determined by $\alpha_{A}\left(1_{A}\right) \in F A$. So, we would like to define a natural transformation $\alpha: H_{A} \rightarrow F$ by setting $\alpha\left(1_{A}\right)=x \in F A$, and $\alpha_{V}(f)=(F f)(x)$. If this is indeed a natural transformation, then we will have set up a bijection between $F A$ and the natural transformations $H_{A} \rightarrow F$. Hence we get \ldots
2.3 • The Yoneda Lemma

THEOREM 2.3.1 (YONEDA LEMMA)
Let \mathcal{C} be a locally small category, $F: \mathcal{C}^{\text {op }} \rightarrow$ Set. Then there is an isomorphism

$$
F A \cong\left[\mathcal{C}^{\text {op }}, \text { Set }\right]\left(H_{A}, F\right)
$$

which is natural in A and F; i.e.

commute, for all $f: A \rightarrow B$ and for all $\theta: F \rightarrow G$ respectively.
PROOF
1 Given $x \in F A$, we define $\widehat{x} \in\left[\complement^{\text {op }}, \operatorname{Set}\right]\left(H_{A}, F\right)$ by components:

$$
\begin{aligned}
\hat{X}_{V}: \mathcal{C}(V, A) & \rightarrow F V \\
f & \mapsto F f(x)
\end{aligned}
$$

We must check the naturality of \widehat{x}; given $g: W \rightarrow V$, we need

to commute. On elements, we have

But $F g(F f(x))=F(f \circ g)(x)$ by the (contravariant) functoriality of F, so the square commutes as required.
2 Given $\alpha \in\left[C^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, F\right)$, we define $\widehat{\alpha} \in F A$ by

$$
\widehat{\alpha}=\alpha_{A}\left(1_{A}\right) .
$$

3 We check $(\hat{\wedge})=()$. Given $x \in F A$,

$$
\begin{aligned}
\hat{\widehat{x}}=\widehat{x}_{A}\left(1_{A}\right) & =F\left(1_{A}\right)(x) \\
& =1_{F A}(x) \\
& =x .
\end{aligned}
$$

Given $\alpha \in\left[{ }^{\text {opp }}, \boldsymbol{S e t}\right]\left(H_{A}, F\right), \widehat{\hat{\alpha}}$ is given by components

$$
\begin{aligned}
\widehat{\hat{\alpha}}: \mathcal{C}(V, A) & \rightarrow F V \\
f & \mapsto F f(\hat{\alpha})=F f\left(\alpha_{A}\left(1_{A}\right)\right) .
\end{aligned}
$$

So we need only check that $\alpha_{V}(f)=F f\left(\alpha_{A}\left(1_{A}\right)\right)$. We have the following naturality square
for α :

so on the element $1_{A} \in \mathcal{C}(A, A)$, we have $\alpha_{V}\left(1_{A} \circ f\right)=F f\left(\alpha_{A}\left(1_{A}\right)\right)$, as required.
4 We check naturality in A, i.e. that given any $B \xrightarrow{f} A$,

commutes. On elements, we have:

Now, the former has components

$$
\begin{aligned}
\mathcal{C}(V, B) \xrightarrow{\left(H_{f}\right)_{V}} & \mathcal{C}(V, A) \xrightarrow{\widehat{x}_{V}} F V \\
\quad g \longmapsto & f \circ g \longmapsto(f \circ g)(x),
\end{aligned}
$$

and the latter

$$
\begin{aligned}
& \mathcal{C}(V, B) \xrightarrow{\widehat{F f(x)_{V}}} F V \\
& \quad g \longmapsto F g \circ F f(x) .
\end{aligned}
$$

But $(F g \circ F f)(x)=F(f \circ g)(x)$ by the functoriality of F; so the naturality square commutes as required.
5 Finally, we must check the naturality in F; given a natural transformation $\theta: F \rightarrow G$, we show that

commutes. We have

and

with respective components

$$
\begin{array}{rlrl}
\mathcal{C}(V, A) & \rightarrow G A & & \text { and } \\
& \mapsto \theta_{V} \circ F f(x) & \text { and }(V) & \rightarrow G A \\
& & f G f \circ \theta_{A}(x)
\end{array}
$$

But these two are equal by the naturality of θ; so the naturality square commutes as required.
Dually, for $F: \mathcal{C} \rightarrow$ Set, we have

$$
F A \cong[\mathcal{C}, \operatorname{Set}]\left(H^{A}, F\right)
$$

THEOREM 2.3.2

The Yoneda embedding is full \& faithful.

PROOF

We need to show that $\mathcal{C}(A, B) \xrightarrow{H_{\bullet}}\left[\mathcal{C}^{\text {op }}, \operatorname{Set}\right]\left(H_{A}, H_{B}\right)$ is an isomorphism. By the Yoneda lemma, with $F=H_{B}$, we have

$$
H_{B}(A) \cong\left[\mathcal{C}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{A}, H_{B}\right)
$$

So we just need to check that H_{\bullet} is the same isomorphism as that given by the Yoneda lemma; i.e. that $\widehat{f}=H_{f}$ or $\widehat{H_{f}}=f$. But

$$
\widehat{H_{f}}=\left(H_{f}\right)_{A}\left(1_{A}\right)=f
$$

Note that this shows that, given $f, g: A \rightarrow B$, then $H_{f}=H_{g} \Rightarrow f=g$. Also, given $H_{A} \xrightarrow{h} H_{B}$, there exists $f: A \rightarrow B$ such that $H_{f}=h$.

PROPOSITION 2.3.3
$A \cong B \in \mathcal{C}$ implies $\mathcal{C}(X, A) \cong \mathcal{C}(X, B)$ and $\mathcal{C}(A, X) \cong \mathcal{C}(B, X)$, each isomorphism being natural in X.

PROOF
$H_{\text {• }}$ is full and faithful, so $A \cong B \Leftrightarrow H_{A} \cong H_{B}$, so $\mathcal{C}(X, A) \cong \mathcal{C}(X, B)$ naturally in X. Similarly for the dual statement.

2.4 • Parametrised representability

Consider F : ${ }^{\text {©op }} \times \mathcal{A} \rightarrow$ Set. For all $A \in \mathcal{A}$, we get

$$
\begin{aligned}
F(, A): \mathcal{C}^{\mathrm{op}} & \rightarrow \text { Set } \\
X & \mapsto F(X, A) .
\end{aligned}
$$

Suppose each $F(, A)$ has a given representation, i.e.

- an object U_{A};
- a natural isomorphism $\alpha_{A}: \mathcal{C}\left(, U_{A}\right) \rightarrow F(, A)$.

So we have an assignation $A \mapsto U_{A}$. Can we extend it to a functor? And are the α_{A} the components of a natural transformation?

PROPOSITION 2.4.1
Given a functor $F: \mathcal{C}^{\text {op }} \times A \rightarrow$ Set such that each $F\left({ }_{-}, A\right): \mathcal{C}^{\text {op }} \rightarrow$ Set has a representation

$$
\alpha_{A}: \mathcal{C}\left({ }_{-}, U_{A}\right) \rightarrow F\left({ }_{-}, A\right)
$$

then there is a unique way to extend $A \mapsto U_{A}$ to a functor $U: \mathcal{A} \rightarrow \mathcal{C}$ such that the α_{A} are components of a natural transformation $H \bullet \cup U \rightarrow F$.

PROOF
First we construct U on morphisms; i.e. given $f: A \rightarrow B$, we seek $U f: U_{A} \rightarrow U_{B}$. In order to satisfy the naturality condition on α, we need

to commute.
Since the horizontal morphisms are isomorphisms, we get a unique morphism on the left $H_{U_{A}} \rightarrow H_{U_{B}}$ making the diagram commute. Now, the Yoneda embedding is full and faithful, so there exists a unique morphism $U_{A} \rightarrow U_{B}$ inducing it. Call this $U f$. It only remains to check that U is functorial; it will make α a natural transformation by construction.
1 Check $U\left(1_{A}\right)=1_{U A}$. Note that $U\left(1_{A}\right)$ is the unique morphism making the naturality square commute, so it suffices to check that $1_{U A}$ makes the square commute.
We have

which commutes as required.
2 We check $U(g \circ f)=U g \circ U f$ given $A \xrightarrow{f} B \xrightarrow{g} C$. Consider

Each square commutes, so the outside commutes. Now, the composite on the RHS is $F(, g \circ f)$, and by definition it induces a unique map $H_{U(g \circ f)}$ on the left such that the diagram commutes. So we must have

$$
\begin{aligned}
H_{U(g \circ f)} & =H_{U g} \circ H_{U f} \\
& =H_{U g \circ U f},
\end{aligned}
$$

by functorality. But the Yoneda embedding is full and faithful, so we have $U(g \circ f)=$ $U g \circ U f$ as required.

DEFINITION 2.4.2
A Cartesian closed category is a category \mathcal{C} equipped with:

- a terminal object T;
- binary objects;
- function spaces.

In fact, in the light of the above results on representability, we can also characterise a Cartesian closed category as containing:

- a representation for the functor $F: X \mapsto 1$, since $1 \cong \mathcal{C}(X, T)$ for T a terminal object;
- representations for the functors $F_{A, B}: X \rightarrow \mathcal{C}(X, A) \times \mathcal{C}(X, B)$, since $\mathcal{C}(X, A) \times \mathcal{C}(X, B) \cong$ $\mathcal{C}(X, A \times B)$ naturally in X;
- representations for the functors $F_{B, C}: X \rightarrow \mathcal{C}(X \times B, C)$, since $\mathcal{C}(X \times B, C) \cong \mathcal{C}\left(X, C^{B}\right)$ naturally in X.

We can do even better; using the parametrised representability result, we can:

- from the functor $F:(X,(A, B)) \mapsto \mathcal{C}(X, A) \times \mathcal{C}(X, B)$, construct the functor $U:(A, B) \mapsto A \times B$;
- from the functor $F:(X,(B, C)) \mapsto \mathcal{C}(X \times B, C)$ construct the functor $U:(B, C) \mapsto C^{B}$.

3 - Limits \& colimits

3.1 • Introduction

Consider any drawable diagram contained within some category \mathcal{D}; for example

Then a limit over this diagram is a universal cone:
3.1.1 • CONES

A cone over a diagram consists of:

- a vertex - an object in \mathcal{D};
- projections - a morphism from the vertex to each object of the diagram, such that all the resulting triangles commute:

3.1.2 - LIMITS AS UNIVERSAL CONES

Informally, something is universal with respect to a property if any other thing with that property factors through it uniquely. A limit is a universal cone over a diagram; that is, a cone such that any other cone factors through it uniquely. For example:

s.t. given Y with

there exists unique φ such that all the triangles commute. As before, the limit is unique up to unique isomorphism.

3.1.3 • Limits over d

Let $\mathbb{\|}$ be a small category (』 is a generalisation of our "drawable diagram"), and let D be a functor $\rrbracket \rightarrow \mathcal{D}$. Then we have the cone over D :

- a vertex $L \in \mathcal{D}$;
- for each object $I \in \mathbb{\square}$, a morphism $k_{I}: L \rightarrow D I$
such that, for all $u: I \rightarrow I^{\prime} \in \mathbb{\square}$,

commutes. We write $\left(L \xrightarrow{k_{X}} D I\right)_{I \in \square}$.
A limit is a universal cone, and the universal property says: given a cone $\left(Y \xrightarrow{p_{X}} D I\right)_{I \in \mathbb{1}}$, there exists a unique morphism $f: Y \rightarrow L$ such that "all triangles commute", i.e., for all $I \in \mathbb{\square}$,

commutes.
3.2 • Some specific limits

3.2.1 • PRODUCTS

A product is a limit of shape \rrbracket with $\mathbb{\square}$ discrete. So, for example, we have

our cone, where $D I, \cdots \in$ ob \mathcal{D}. The universal property says, given any other cone from L^{\prime}, say, then

has a unique morphism $L^{\prime} \rightarrow L$ such that every triangle commutes. We write

$$
\prod_{I \in \rrbracket} D I \xrightarrow{p_{I}} D I .
$$

We have already seen the product over the empty set, i.e. a terminal object, and the product over $\{\bullet, \bullet\}$; that is, a binary product.

3.2.2 • EQUALISERS

An equaliser is a limit of shape $\bullet \longrightarrow \bullet$ A diagram of this shape in \mathcal{D} is of the form

$$
A \xlongequal[g]{\stackrel{f}{\Longrightarrow}} B
$$

A cone over this diagram is

Note that $m=f e=g e$ as all triangles commute; so in fact we can rewrite this more simply as

$$
E \xrightarrow{e} A \xlongequal[g]{\rightleftharpoons} B \quad \text { such that } f e=g e
$$

An equaliser is the universal such; so given any $C \xrightarrow{h} A \underset{g}{f} B$ such that $f h=g h$, then there exists a unique factorisation:

such that $h=e \bar{h}$.

3.2.3 - PULLBACKS

A pullback is a limit of shape

A diagram of this shape in \mathcal{D} is

A cone over this diagram is

commuting (really, there is a projection $c: Z \rightarrow V$, but we must have $c=f a=g b$). A pullback is the universal such; so given any commutative square

we have

a unique h such that $g^{\prime} h=a$, and $f^{\prime} h=b$. We say that g^{\prime} is a pullback for g over f, and that f^{\prime} is a pullback for f over g.
3.3 - Limits - formally

DEFINITION 3.3.1
Given $Y \in \mathcal{D}$, we define the constant functor ΔY :

$$
\begin{aligned}
\Delta Y: ~ & \rightarrow \mathcal{D} \\
& I \mapsto Y \\
f & \mapsto 1_{Y} .
\end{aligned}
$$

From this we get a functor:

$$
\begin{array}{ccc}
\Delta: ~ & \rightarrow[& {[0, \mathcal{D}]} \\
Y & \mapsto \Delta Y \\
X & \Delta X \\
f \mid & \mapsto & \Delta \Delta f \\
Y & & \Delta Y
\end{array}
$$

with every component of Δf being f.

DEFINITION 3.3.2
A limit for $D: \rrbracket \rightarrow \mathcal{D}$ is a representation for the functor

$$
[0, \mathcal{D}]\left(\Delta_{-}, D\right): \mathcal{D}^{\mathrm{op}} \rightarrow \text { Set. }
$$

That is, an object $L \in \mathcal{D}$ and a natural isomorphism α with

$$
H_{L} \stackrel{\alpha}{\cong}[\square, \mathcal{D}]\left(\Delta_{-}, D\right) .
$$

We write $L=\lim _{\leftarrow \square} D=\int_{I} D I$.
So we have an isomorphism

$$
\mathcal{D}\left(, \int_{I} D I\right) \cong[\square, \mathcal{D}]\left(\Delta_{-}, D\right)
$$

Let us make explicit what the functor on the right hand side does; call it F. Then:

$$
\begin{aligned}
& F: \mathcal{D}^{\mathrm{op}} \rightarrow \text { Set } \\
& Y \mapsto[\square, \mathcal{D}](\Delta Y, D)
\end{aligned}
$$

Now, what does a natural transform $\Delta Y \xrightarrow{k} D$ look like? We have:

- for each $I \in \mathbb{\square}$, a morphism

$$
\begin{aligned}
k_{I}:(\Delta Y) I & \rightarrow D I \\
Y & \rightarrow D I ;
\end{aligned}
$$

- for all $u: I \rightarrow I^{\prime}$ in \rrbracket,

commutes by naturality; i.e.

commutes.
So such a natural transformation is precisely a cone over D with Y as the vertex. Now, consider a representation as above, and let α be its natural isomorphism. Then we have

$$
\begin{aligned}
\alpha_{Y}: \mathcal{D}(Y, L) & \rightarrow[\square, \mathcal{D}](\Delta Y, D) \\
f & \mapsto F f\left(\alpha_{L} 1_{L}\right) ;
\end{aligned}
$$

i.e., the natural transformation is completely determined by $\alpha_{L} 1_{L}$.

Now, we have a cone given by $\alpha_{L} 1_{L}=\left(k_{I}\right)_{I \in \square}$, say. So given any other Y and $Y \xrightarrow{f} L$ on the left
hand side, we have $F f\left(\alpha_{L} 1_{L}\right)$ with components $k_{I} \circ f$; hence we have a bijective correspondence

$$
\begin{gathered}
\text { morphisms } \\
Y \xrightarrow{f} L
\end{gathered} \quad \leftrightarrow \quad \begin{gathered}
\text { cones over } D \\
\left(k_{I} \circ f\right)_{I \in \mathbb{\square}}
\end{gathered}
$$

i.e., starting on the right hand side, given any cone $\left(p_{I}\right)_{I \in \square}$, there exists a unique morphism $f: Y \rightarrow L$ such that $p_{I}=k_{I} \circ f$ for all I; thus $\left(k_{I}\right)_{I \in \square}$ is a universal cone over D.

Note that any isomorphism on the left hand side will give rise to a universal cone.

DEFINITION 3.3.3

If a limit exists for all functors from $D: \square \rightarrow \mathcal{D}$, we say \mathcal{D} has all limits of shape $\mathbb{\square}$.
If \mathcal{D} has all limits of shape \rrbracket for all small/finite categories \rrbracket, we say \mathcal{D} has all small/finite limits or that \mathcal{D} is (finitely) complete.
3.4 • Limits in Set

```
THEOREM 3.4.1
```

Set has all small limits.
PROOF
We seek a limit for $F: \rrbracket \rightarrow$ Set. We define L, a set of tuples $\subseteq \prod_{I \in \rrbracket} F I$ by taking all tuples
$\left(x_{I}\right)_{I \in \rrbracket}$ satisfying:

- $\forall I \in \mathbb{Z}, x_{I} \in F I ;$
- $\forall I \xrightarrow{u} I^{\prime}, F u\left(x_{I}\right)=x_{I^{\prime}}$.

We have projections

$$
\begin{array}{r}
L \xrightarrow{p_{I}} F I \\
\left(x_{I}\right)_{I \in \square} \mapsto x_{I}
\end{array}
$$

for each $I \in \mathbb{\square}$. We now show that this is a minimal cone:
1 It is a cone; we need to show, for all $u: I \rightarrow I^{\prime}$, that

commutes. On elements we have

so we are done here, since $F u\left(x_{I}\right)=x_{I^{\prime}}$.
2 It is universal: we show that every cone factors through it uniquely. So consider a cone $\left(Z \xrightarrow{q_{I}} F I\right)_{I \in \square}$; so

commutes; that is, for all $y \in Z, F u\left(q_{I}(y)\right)=q_{I^{\prime}}(y)$. We seek a unique factorisation making the following diagram commute for all I :

On elements, this would give

So, writing $h(y)=\left(a_{I}\right)_{I \in \emptyset}$, we must have $a_{I}=q_{I}(y)$. So define h by $h(y)=\left(q_{I}(y)\right)_{I \in \square}$. It remains to check that $h(y) \in L$, so that for all $u: I \rightarrow I^{\prime}, F u\left(a_{I}\right)=a_{I^{\prime}}$; i.e.

$$
F u\left(q_{I}(y)\right)=q_{I^{\prime}}(y)
$$

which follows since $\left(Z \xrightarrow{q_{I}} F I\right)_{I \in \square}$ is a cone.

3.5 - Limits in other categories

THEOREM 3.5.1
If a category \mathcal{D} has all small products and equalisers, then \mathcal{D} has all small limits. PROOF

Given a diagram $D: \rrbracket \rightarrow \mathcal{D}, \rrbracket$ small, we seek a limit in \mathcal{D}. The idea of the proof is to construct it as an equaliser $E \xrightarrow{e} P \xrightarrow[g]{\stackrel{f}{\longrightarrow}} Q$, where P and Q are certain products over the DI. 1 Put

$$
P=\prod_{I \in \mathbb{\unrhd}} D_{I}
$$

with projections $P \xrightarrow{p_{I}} D I$; this is a small product, so exists.
2 Put

$$
Q=\prod_{u: I \rightarrow J \in \mathbb{Z}} D J
$$

with projections $Q \xrightarrow{q_{U}} D J$; again, a small product, so exists.
3 Induce f by the universal property of Q as follows: for all $u: I \rightarrow J$, we have $p_{J}: P \rightarrow D J$ inducing a unique $f: P \rightarrow Q$ such that $\forall u$,

$$
\begin{equation*}
q_{U} \circ f=p_{J} \tag{1}
\end{equation*}
$$

4 Induce g by the universal property of product Q (differently) as follows: for all $u: I \rightarrow J$, we have $D u \circ p_{I}: P \rightarrow D J$ inducing a unique $g: P \rightarrow Q$ such that, for all u,

$$
\begin{equation*}
q_{u} \circ g=D u \circ p_{I} \tag{2}
\end{equation*}
$$

5 Take equaliser $E \xrightarrow{e} P \xrightarrow[g]{\stackrel{f}{\Longrightarrow}} Q$; so in particular

$$
\begin{equation*}
f e=g e \tag{3}
\end{equation*}
$$

Claim that $\left(E \xrightarrow{p_{I} \circ e} D I\right)_{I \in \rrbracket}$ gives a universal cone over D.
6 First we show it is a cone; i.e. for all $u: I \rightarrow J$,

$$
\begin{equation*}
D u \circ p_{I} \circ e=p_{J} \circ e \tag{4}
\end{equation*}
$$

This is true, since

$$
\begin{aligned}
D u \circ p_{i} \circ e & =q_{u} \circ g \circ e & & \text { by (2) } \\
& =q_{u} \circ f \circ e & & \text { by }(3) \\
& =p_{J} \circ e & & \text { by }(1)
\end{aligned}
$$

It remains to show that this cone is universal; i.e. given any cone $\left(V \xrightarrow{v_{I}} D I\right)_{I \in \emptyset}$, we seek a unique $x: V \rightarrow E$ such that for all $I \in \square, p_{I} \circ e \circ x=v_{I}$.

We will construct a diagram

So suppose we are given such a cone $\left(V \xrightarrow{v_{I}} D I\right)_{I \in \square}$. So for all $u: I \rightarrow J$,

$$
\begin{equation*}
D u \circ v_{I}=v_{J} . \tag{5}
\end{equation*}
$$

7 Induce $k: V \rightarrow P$ by the universal property of P : for all $I \in \mathbb{\square}$, we have $V \xrightarrow{v_{I}} D I$ inducing a unique $k: V \rightarrow P$ such that, for all I,

$$
\begin{equation*}
p_{I} \circ k=v_{I} \tag{6}
\end{equation*}
$$

8 Induce $x: V \rightarrow E$ by the universal property of the equaliser; in order to do this, we must first show that $f k=g k$. Now, for all $u: I \rightarrow J$, we have $V \underset{v_{J}}{ } D J$ inducing a unique $m: V \rightarrow$ Q such that

$$
\begin{equation*}
q_{u} \circ m=v_{J} \tag{7}
\end{equation*}
$$

But $f k$ and $g k$ both satisfy this condition, since, for all u,

$$
\begin{aligned}
q_{u} \circ f_{k} & =p_{J} \circ k & & \text { by }(1) \\
& =v_{J} & & \text { by }(6)
\end{aligned}
$$

and

$$
\begin{aligned}
q_{u} \circ g_{k} & =D u \circ p_{I} \circ k & & \text { by }(2) \\
& =D_{u} \circ v_{I} & & \text { by }(6) \\
& =v_{J} & & \text { by }(5)
\end{aligned}
$$

Hence $f k=g k$; so we can induce a unique $x: V \rightarrow E$ such that

$$
\begin{equation*}
e \circ x=k \tag{8}
\end{equation*}
$$

9 We now check that x is a factorisation for the cones. So given $I \in \mathbb{\rrbracket}$,

$$
\begin{aligned}
p_{I} \circ e \circ x & =p_{I} \circ k & & \text { by (8) } \\
& =v_{I} & & \text { by (6) }
\end{aligned}
$$

so we have the desired result.
10 Finally, we show that x is unique with this property; suppose we have a morphism $y: V \rightarrow$ E such that, for all I,

$$
\begin{equation*}
p_{I} \circ e \circ y=v_{I} \tag{9}
\end{equation*}
$$

Now by construction x is unique such that $e x=k$, so we seek to show also $e y=k$. By construction, k is unique such that for all $I, p_{I} \circ k=v_{I}$ (by (6)); but (9) says that ey also satisfies this. Hence $e y=k$, so $y=x$ and we are done.

Colimits
DEFINITION 3.6.1
A colimit for a diagram $D: \rrbracket \rightarrow \mathcal{D}$ is a representation

$$
\mathcal{D}\left(\int^{I} D I,_{-}\right) \cong[\square, \mathcal{D}]\left(D, \Delta_{-}\right)
$$

So a colimit for $D: \llbracket \rightarrow \mathcal{D}$ is essentially a limit of $D^{\text {op }: ~} \rrbracket^{\mathrm{op}} \rightarrow \mathcal{D}^{\text {op }}$. If D has all small colimits, we say it is cocomplete.

LECTURE $11 \cdot 04 / 11 / 02$
3.7 • Parametrised limits

Recall two results:
1 Given a diagram $D: \llbracket \rightarrow \mathcal{D}$, a limit for D is a representation

$$
\mathcal{D}\left(\int_{-}, \int_{I} D I\right) \cong[\square, \mathcal{D}]\left(\Delta_{-}, D\right)
$$

2 Given a functor X : $\mathcal{C}^{\text {op }} \times \mathcal{A} \rightarrow$ Set such that each $X(, A)$ has a representation

$$
\alpha_{A}: \mathcal{C}\left(, U_{A}\right) \cong X(, A)
$$

then there is a unique way to extend $A \mapsto U_{A}$ to a functor such that

$$
\mathcal{C}\left(Y, U_{A}\right) \cong X(Y, A)
$$

naturally in Y and A, with components of the implied natural transformation given by α_{A}. PROPOSITION 3.7.1

Define $F: \llbracket \times \mathcal{A} \rightarrow \mathcal{D}$ such that each $F(, A): \rrbracket \rightarrow \mathcal{D}$ has a specified limit in \mathcal{D} :

$$
\mathcal{D}\left(, \int_{I} F(I, A)\right) \cong[\square, \mathcal{D}]\left(\Delta_{-}, F(,, A)\right)
$$

Then there is a unique way to extend $A \mapsto \int_{I} F(I, A)$ to a functor $\mathcal{A} \rightarrow \mathcal{D}$ such that

$$
\mathcal{D}\left(Y, \int_{I} F(I, A)\right) \cong[\square, \mathcal{D}](\Delta Y, F(,, A))
$$

naturally in Y and A.

PROOF

Simple application of parametrised representability.
APPLICATION 3.7.2
Suppose \mathcal{D} has chosen limits of shape \llbracket. Consider the evaluation functor

$$
\begin{aligned}
\varepsilon: \llbracket \times[\square, \mathcal{D}] & \rightarrow \mathcal{D} \\
(I, D) & \mapsto D I
\end{aligned}
$$

Then $\varepsilon\left(_, D\right)$ has a limit for each $D, \int_{I} D I$. By parametrised limits, we get a functor

$$
\begin{aligned}
\int_{I}:[\square, \mathcal{D}] & \rightarrow \mathcal{D} \\
D & \mapsto \int_{I} D I
\end{aligned}
$$

such that $\mathcal{D}\left(Y, \int_{I} D I\right) \cong[\square, \mathcal{D}](\Delta Y, D)$ naturally in Y and D.
APPLICATION 3.7.3
We can restate the definition of a limit to get

$$
\mathcal{D}\left(Y, \int_{I} D I\right) \cong \int_{I} \mathcal{D}(Y, D I)
$$

What does this mean?
1 The right hand side is the limit of the functor

$$
\begin{array}{rlr}
\mathcal{D}\left(Y, D_{-}\right): \mathbb{\square} \rightarrow \text { Set } & \\
I & \mapsto \mathcal{D}(Y, D I) \\
I & & \mathcal{D}(Y, D I) \\
u \mid & \mapsto & \underset{I^{\prime}}{\mid D u \circ_{-}} \\
& \underset{D}{ }\left(Y, D I^{\prime}\right)
\end{array}
$$

Set is complete, so this certainly has a limit. What does $\int_{I} \mathcal{D}(Y, D I)$ look like? Well, it is all tuples $\left(\alpha_{I}\right)_{I \in \emptyset}$ such that

$$
\forall I, \alpha_{I} \in \mathcal{D}(Y, D I)
$$

and

$$
\forall u: I \rightarrow I^{\prime}, D u \circ \alpha_{I}=\alpha_{I^{\prime}} .
$$

So this is precisely a cone over D; i.e.

$$
\int_{I} \mathcal{D}(Y, D I)=[\square, \mathcal{D}](\Delta Y, D)
$$

2 Observe that by parametrised limits, we have a functor

$$
Y \mapsto \int_{I} \mathcal{D}(Y, D I)
$$

So

$$
\int_{I} \mathcal{D}(Y, D I)=[\square, \mathcal{D}](\Delta Y, D) \cong \mathcal{D}\left(Y, \int D I\right)
$$

naturally in Y and D.
3.8 • Preservation, reflection and creation of limits

Let $\square \xrightarrow{D} \mathcal{D} \xrightarrow{F} \mathcal{E}$. We can consider limits over D and limits over $F D$.
DEFINITION 3.8.1
Suppose we have a limit cone for D

$$
\left(\int_{I} D I \xrightarrow{k_{I}} D I\right)_{I \in \mathbb{』}}
$$

We say F preserves this limit if

$$
\left(F \int_{I} D I \xrightarrow{F k_{I}} F D I\right)_{I \in \emptyset}
$$

is a limit cone for $F D$ in \mathcal{E}. Note that it must preserve projections.

DEFINITION 3.8.2

Suppose $F D: \llbracket \rightarrow \mathcal{E}$ has a limit cone. We say F reflects this limit if any cone that goes to a limit cone was already a limit cone itself. That is, given a cone

$$
\left(Z \xrightarrow{f_{I}} D I\right)_{I \in \rrbracket}
$$

such that $\left(F Z \xrightarrow{F f_{I}} F D I\right)_{I \in \rrbracket}$ is a limit cone for $F D$, then $\left(Z \xrightarrow{f_{I}} D I\right)_{I \in \square}$ is also a limit cone.

DEFINITION 3.8.3
Suppose $F D: \llbracket \rightarrow \mathcal{E}$ has a limit cone. We say F creates this limit if there exists a cone $(Z$ $\left.\xrightarrow{f_{I}} D I\right)_{I \in \square}$ such that $\left(F Z \xrightarrow{F f_{I}} F D I\right)_{I \in \square}$ is a limit cone for $F D$, and additionally F reflects limits. That is, given a limit for $F D$, there is a unique-up-to-isomorphism lift to a limit for D.

3.9 .
 Examples of preservation, reflection and creation

PROPOSITION 3.9.1
Representable functors preserve limits.

```
PROOF
```

We consider

$$
\begin{aligned}
& \square \xrightarrow{D} \mathcal{C} \xrightarrow{H^{U}} \text { Set } \\
& I \longmapsto D I \longmapsto \mathcal{C}(U, D I)
\end{aligned}
$$

Given a limit cone for D,

$$
\left(\int_{I} D I \xrightarrow{k_{I}} D I\right)_{I \in \emptyset},
$$

we need to show that

$$
\mathcal{C}\left(U, \int_{I} D I\right) \xrightarrow{k_{I} \circ} \mathcal{C}(U, D I)
$$

is a limit cone for $\mathcal{C}\left(U, D_{-}\right)$. Certainly, $\mathcal{C}\left(U, \int_{I} D I\right) \cong \int_{I} \mathcal{C}(U, D I)$. And for projections

$$
\begin{aligned}
\mathcal{C}\left(U, \int_{I} D I\right) & \cong[\square, \mathcal{C}](\Delta U, D)=\int_{I} \mathcal{C}(U, D I) \\
f & \mapsto k_{I} \circ f
\end{aligned}
$$

so we are done. Dually, we have

$$
\mathcal{C}\left(\int^{I} D I, U\right) \cong \int_{I} \mathcal{C}(D I, U)
$$

so H_{U} takes a colimit in \mathcal{C} to a limit in Set; and hence takes a limit in $\mathcal{C}^{\text {©op }}$ to a limit in Set. Thus H_{U} also preserves limits.

PROPOSITION 3.9.2
A full and faithful functor preserves limits.
PROOF
Consider $\square \xrightarrow{D} \mathcal{C} \xrightarrow{F} \mathcal{E}$, with F full and faithful, and let $\left(Z \xrightarrow{f_{I}} D I\right)_{I \in \rrbracket}$ be a cone such that F of it is a limit cone for $F D$. We need to show that this cone itself is a limit.
Now, given any other cone $\left(W \xrightarrow{g_{I}} D I\right)_{I \in \square}$, we seek a unique h such that $g_{I}=f_{I} \circ h$ for all $I \in \mathbb{I}$. So
1 Since $F\left(Z \xrightarrow{f_{I}} D I\right)$ is a limit, there exists unique m such that $F g_{I}=F f_{i} \circ m$ for all $I \in \mathbb{\square}$.
2 Since F is full, there exists $h: W \rightarrow Z$ such that $F h=m$.
3 Check commuting condition: we know that, for all $I \in \mathbb{\square}, F g_{I}=F f_{i} \circ F h$, i.e. $F g_{I}=F\left(f_{i} \circ h\right)$. Hence $f_{I} \circ h=g_{I}$ since F is faithful.
4 Suppose there is a k such that for all $I \in \mathbb{\square}, f_{I} \circ k=g_{I}$. Then $F f_{I} \circ F k=F g_{I}$ for all I; but we have that m is the unique morphism such that $F f_{i} \circ m=F g_{I}$; hence $F k=m=F h$, so $k=h$ (as F faithful), and we are done.

4 • Ends and coends

4.1 • Dinaturality

DEFINITION 4.1.1
Given functors F, G : $\mathcal{C}^{\text {op }} \times \mathcal{C} \longrightarrow \mathcal{D}$, a dinatural transform $\alpha: F \rightarrow G$ consists of, for each $U \in \mathcal{C}$, a component

$$
\alpha_{U}: F(U, U) \rightarrow G(U, U)
$$

such that for all $f: U \rightarrow V$,

commutes.
Note that there is no sensible composition of dinatural transformation, and hence $\operatorname{Dinat}(F, G)$ is just a set.
4.2 • Ends and coends

Recall that a limit for $D: \square \rightarrow \mathcal{D}$ is a representation for $[\square, \mathcal{D}]\left(\Delta_{-}, D\right)=\operatorname{Nat}\left(\Delta_{-}, D\right)$, such that

$$
\mathcal{D}\left(Y, \int_{I} D I\right) \cong \operatorname{Nat}(\Delta Y, D) \quad \text { naturally in } Y
$$

DEFINITION 4.2.1
An end for F : $\square^{\text {op }} \times \square \rightarrow \mathcal{D}$ is a representation for the functor

$$
\operatorname{Dinat}\left(\Delta_{-}, F\right): \mathcal{D}^{\mathrm{op}} \rightarrow \text { Set }
$$

so that

$$
\mathcal{D}\left(Y, \int_{I} F(I, I)\right) \cong \operatorname{Dinat}(\Delta Y, F) \quad \text { naturally in } Y
$$

Dually, a coend for F is just a representation for $\operatorname{Dinat}\left(F, \Delta_{-}\right): \mathcal{D} \rightarrow$ Set so

$$
\mathcal{D}\left(\int^{I} F(I, I), Y\right) \cong \operatorname{Nat}(F, \Delta Y) \quad \text { naturally in } Y
$$

REMARK

Ends are in fact just a special sort of limit; any end can be expressed as a limit.
4.3 • Ends in Set

Recall a limit in Set for $D: \rrbracket \longrightarrow$ Set is given by

$$
\left\{\left(x_{I}\right)_{I \in \mathbb{Z}} \mid \forall I, x_{i} \in D I, \forall u: I \rightarrow I^{\prime}, D u\left(x_{I}\right)=x_{I^{\prime}}\right\} .
$$

An end in Set for $X: \square^{\mathrm{op}} \times \square \longrightarrow$ Set is given by

$$
\left\{\left(x_{I}\right)_{I \in \square} \mid \forall I, x_{i} \in X(I, I), \forall f: I \rightarrow I^{\prime}, X(1, f)\left(x_{I}\right)=X(f, 1)\left(x_{I^{\prime}}\right)\right\} .
$$

4.4 - Key observations

OBSERVATION 4.4.1
Parametric results follow, so we can use ends in Set to restate the definition of (co)ends. Consider

$$
\begin{aligned}
X_{V}: \mathbb{D}^{\text {op }} \times \mathbb{\square} & \rightarrow \text { Set } \\
(I, J) & \mapsto \mathcal{D}(V, F(I, J))
\end{aligned}
$$

We have an end in Set

$$
\int_{I} X_{V}(I, I) \cong \int_{I} \mathcal{D}(V, F(I, I))=\operatorname{Dinat}(\Delta V, F)
$$

So we get:

$$
\begin{aligned}
\text { End: } \mathcal{D}\left(V, \int_{I} F(I, I)\right) & \cong \int_{I} \mathcal{D}(V, F(I, I)) \\
\text { Coend: } \mathcal{D}\left(\int^{I} F(I, I), V\right) & \cong \int_{I} \mathcal{D}(F(I, I), V)
\end{aligned}
$$

OBSERVATION 4.4.2
The set $[\mathbb{C}, \mathcal{D}](F, G)$ is an end in Set. For consider

$$
\begin{aligned}
X: \mathbb{C}^{\mathrm{op}} \times \mathbb{C} & \rightarrow \text { Set } \\
(U, V) & \mapsto \mathcal{D}(F U, G V)
\end{aligned}
$$

Then $\int_{U} X(U, U)=\int_{U} \mathcal{D}(F U, G I)$ is just

$$
\left\{\left(\alpha_{U}\right)_{U \in \mathbb{C}} \mid \alpha_{U}: F U \rightarrow G U \text { and } \forall f: U \rightarrow U^{\prime}, X(1, f)\left(\alpha_{U}\right)=X(f, 1)\left(\alpha_{U^{\prime}}\right)\right\}
$$

But now

$$
G f \circ \alpha_{U}=X(1, f)\left(\alpha_{U}\right)=X(f, 1)\left(\alpha_{U^{\prime}}\right)=\alpha_{U^{\prime}} \circ F f
$$

so this is just a naturality condition on the α_{U} 's; and hence we have

$$
\int_{U} X(U, U)=\int_{U} \mathcal{D}(F U, G I)=[\mathbb{C}, \mathcal{D}](F, G) .
$$

OBSERVATION 4.4.3
We can restate the Yoneda lemma. Recall that if $X: \mathbb{C}^{\text {op }} \rightarrow$ Set, we have

$$
\begin{array}{rlr}
X(U) & \cong\left[\mathbb{C}^{\text {op }}, \text { Set }\right]\left(H_{U}, X\right) \\
& \cong \int_{V}\left[H_{U}(V), X(V)\right] \quad \text { where }[,] \text { means morphisms in Set } \\
& \cong \int_{V}[\mathbb{C}(V, U), X(V)] &
\end{array}
$$

4.5 - Applications

Consider a functor $F: \rrbracket \rightarrow[\mathbb{C}, \mathcal{D}]$. What does a limit cone for this look like? We have

$$
\left(L \xrightarrow{\alpha_{I}} F I\right)_{I \in \mathbb{1}}
$$

with L a functor and α_{I} a natural transformation $L \rightarrow F I$ with components $\left(\alpha_{I}\right)_{C}: L C \rightarrow F I(C)$. Now, given $C \in \mathbb{C}$, we can evaluate the whole cone at C :

$$
\left(L C \xrightarrow{\alpha_{I C}} F I(C)\right)_{I \in \square}
$$

Now if this is a limit cone in \mathcal{D} for

$$
\begin{aligned}
F_{C}: & \mathbb{I} \rightarrow \mathcal{D} \\
& I \mapsto F I(C)
\end{aligned}
$$

then we say that the limit for F is "computed pointwise".
PROPOSITION 4.5.1
Suppose $F: \llbracket \rightarrow[\mathbb{C}, \mathcal{D}]$ is such that for all $C \in \mathbb{C}$,

$$
\begin{aligned}
F_{C}: \rrbracket & \longrightarrow \mathcal{D} \\
I & \mapsto F I(C)
\end{aligned}
$$

has a limit cone

$$
\left(\int_{I} F I(C) \xrightarrow{\left(p^{C}\right)_{I}} F I(C)\right)_{I \in \square} .
$$

Then F has a limit

$$
\left(\int_{I} F I \xrightarrow{k_{I}} F I\right)_{I \in \mathbb{\unrhd}}
$$

computed pointwise; i.e.

$$
\begin{aligned}
\left(\int_{I} F I\right)(C) & =\int_{I} F I(C) \\
\text { and }\left(k_{I}\right)_{C} & =\left(p^{C}\right)_{I}
\end{aligned}
$$

PROOF
We have a functor

$$
\begin{aligned}
\bar{F}: \mathbb{\square} & \times \mathbb{C} \\
(I, C) & \mapsto F I(C)
\end{aligned}
$$

and each $\bar{F}(, C)=F_{C}$ has a limit, so by parametrized limits, we get a functor

$$
C \mapsto \int_{I} F I(C)
$$

Call it L, and claim this gives the limit as required. So we need to show

$$
[\mathbb{C}, \mathcal{D}](Y, L) \cong[\mathbb{\square},[\mathbb{C}, \mathcal{D}]](\Delta Y, F)
$$

naturally in Y, and to check projections.
Now,

$$
\begin{array}{rlr}
{[\mathbb{C}, \mathcal{D}](Y, L)} & \cong \int_{C} \mathcal{D}(Y C, L C) & \text { set of nat trans is end in Set } \\
& =\int_{C} \mathcal{D}\left(Y C, \int_{I} \bar{F}(I, C)\right) & \text { rewriting } L C \\
& \cong \int_{C}[\mathbb{D}, \mathcal{D}]\left(\Delta(Y C), \bar{F}\left(_, C\right)\right) & \text { by definition of limit } \\
& \cong[\mathbb{C},[\mathbb{D}, \mathcal{D}]](\Delta(Y \bullet), \bar{F}(-, \bullet)) & \text { end in Set is set of nat trans } \\
& \cong[\mathbb{\square},[\mathbb{C}, \mathcal{D}]](\Delta Y, F) &
\end{array}
$$

where the last isomorphism holds since

$$
[\mathbb{C},[\mathbb{D}, \mathcal{D}]] \cong[\mathbb{C} \times \mathbb{D}, \mathcal{D}] \cong[\mathbb{0},[\mathbb{C}, \mathcal{D}]]
$$

Note that each line is natural in Y; and the third line gives the projections as required.
We have the same result for colimits, ends and coends. However, it may be possible for nonpointwise limits to exist if not all the F_{C} 's have limits.

THEOREM 4.5.2

The Yoneda embedding preserves limits.

PROOF

Consider $\mathbb{\square} \xrightarrow{D} \mathbb{C} \xrightarrow{H_{\bullet}}\left[\mathbb{C}^{\text {op }}\right.$, Set $]$. Suppose we have a limit cone for D,

$$
\left(\int_{I} D I \xrightarrow{k_{I}} D I\right)_{I \in \mathbb{\square}}
$$

We need to show that $\left(\mathbb{C}\left(, \int_{I} D I\right) \xrightarrow{H_{k_{I}}} \mathbb{C}(, D I)\right)_{I \in \square}$. is a limit for $H_{\bullet} \circ D$. By the previous result, it suffices to do this pointwise; so for all $C \in \mathbb{C}$, we need that

$$
\left(\mathbb{C}\left(C \int_{I} D I\right) \xrightarrow{k_{I} \circ_{-}} \mathbb{C}(C, D I)\right)_{I \in \square}
$$

is a limit for $I \mapsto \mathbb{C}(C, D I)$, i.e. $H_{C} \circ D$. But we have already shown this, since representables preserve limits, and the given cone is just H_{C} of $\left(\int_{I} D I \underset{k_{I}}{\longrightarrow} D I\right)_{I \in \square}$.

```
THEOREM 4.5.3 (FUBINI)
```

Suppose $F: \llbracket \times \rrbracket \longrightarrow \mathcal{D}$ is such that $F_{J}: \rrbracket \longrightarrow \mathcal{D}$ has a limit $\int_{I} F(I, J)$ for all $J \in \mathbb{J}$. Then we have a functor

$$
\int_{I} F\left(I,,_{-}\right): J \mapsto \int_{I} F(I, J)
$$

such that

$$
\int_{J} \int_{I} F(I, J) \cong \int_{(I, J)} F(I, J)
$$

in the sense that if one exists, then so does the other, and they are isomorphic with corresponding limit cones.

PROOF
The right-hand side is a representation of $[\square \times \mathbb{J}, \mathcal{D}]\left(\Delta_{-}, F\right)$; the left-hand side is a representation of $[\mathbb{J}, \mathcal{D}]\left(\Delta_{-}, \int_{I} F\left(I,{ }_{-}\right)\right)$. Now,

$$
\begin{aligned}
{[\mathbb{\square} \times \mathbb{J}, \mathcal{D}](\Delta V, F) } & \cong[\mathbb{\square}[\mathbb{J}, \mathcal{D}]]\left(\Delta V, F\left(\left(_{-}\right)\right)\right. \\
& \cong \int_{I}[\mathbb{J}, \mathcal{D}]\left(\Delta V, F\left(I,,_{-}\right)\right) \\
& =[\mathbb{J}, \mathcal{D}]\left(\Delta V, \int_{I} F(I,-)\right) .
\end{aligned}
$$

Hence representations give the result.
COROLLARY 4.5.4
Suppose $F: \llbracket \times \rrbracket \rightarrow \mathcal{D}$ such that $\int_{I} F\left(I,,_{-}\right): \rrbracket \rightarrow \mathcal{D}$ and $\int_{J} F(, J): \rrbracket \rightarrow \mathcal{D}$ exist. Then

$$
\int_{J} \int_{I} F(I, J) \cong \int_{I} \int_{J} F(I, J)
$$

in the same sense as above.
PROOF
Both are isomorphic to $\int_{(I, J)} F(I, J)$.
Note that also we have colimits, ends and coends commuting with themselves; also (co)ends commute with (co)limits.
THEOREM 4.5.5 (DENSITY)
For $X: \mathbb{C}^{\mathrm{op}} \rightarrow$ Set, we have

$$
X(U) \cong \int^{W} \mathbb{C}(U, W) \times X(W)
$$

naturally in U.
PROOF
We aim to show that

$$
\left[\mathbb{C}^{\text {op }}, \operatorname{Set}\right](X, Y) \cong\left[\mathbb{C}^{\text {op }}, \operatorname{Set}\right]\left(\int^{W} \mathbb{C}(, W) \times X(W), Y\right)
$$

and deduce result by above. So:

$$
\begin{array}{rlr}
\text { RHS } & \cong \int_{U}\left[\int^{W} \mathbb{C}(U, W) \times X(W), Y(U)\right] & \text { set of nat trans is end in Set } \\
& \cong \int_{U} \int_{W}[\mathbb{C}(U, W) \times X(W), Y(U)] & \text { restate definition of colimit } \\
& \cong \int_{W} \int_{U}[\mathbb{C}(U, W) \times X(W), Y(U)] & \text { Fubini interchange } \\
& \cong \int_{W} \int_{U}[X(W),[\mathbb{C}(U, W), Y(U)]] & \text { definition of function space } \\
& \cong \int_{W}\left[X(W), \int_{U}[\mathbb{C}(U, W), Y(U)]\right] & \text { restate definition of end } \\
& \cong \int_{W}[X(W), Y(W)] & \text { Yoneda restated } \\
& \cong\left[\mathbb{C}^{\text {op }}, \operatorname{Set}\right](X, Y) & \text { end in Set is set of nat trans }
\end{array}
$$

Hence, since the Yoneda embedding is full and faithful, we have the desired natural isomorphism

$$
X \cong \int^{W} \mathbb{C}(, W) \times X(W)
$$

THEOREM 4.5 .6
Every presheaf is a colimit of representables.
PROOF
By previous result, we have

$$
X U \cong \int^{W \in \mathbb{C}} \mathbb{C}(U, W) \times X(W)
$$

The idea of the proof is that this is almost a colimit of representables. We would like to say that it is $\int^{W \in \mathbb{C}, x \in X(W)} \mathbb{C}(U, W)$. Can we do this in any way?

We can, by defining the Grothendieck Fibration. Given $X: \mathbb{C}^{\mathrm{op}} \rightarrow$ Set, we define a category $\mathfrak{G}(X)$ with

- objects being pairs $(W, x), W \in \mathcal{C}, x \in X W$.
- morphisms $(W, x) \rightarrow\left(W^{\prime}, x^{\prime}\right)$ being $f: W \rightarrow W^{\prime}$ such that $X f\left(x^{\prime}\right)=x$.

There is a forgetful functor

$$
\begin{aligned}
P: \mathbb{G}(X) & \rightarrow \mathbb{C} \\
\quad(W, x) & \mapsto W
\end{aligned}
$$

So we get $\mathbb{G}(X) \xrightarrow{P} \mathbb{C} \xrightarrow{H_{\bullet}}\left[\mathbb{C}^{\text {op }}\right.$, Set $]$, and

$$
X(U) \cong \int^{\alpha \in G(X)} \mathbb{C}(U, P(\alpha))
$$

Hence we get $X \cong \int^{\alpha \in G(X)} H_{P(\alpha)}$, a colimit of representables.
THEOREM 4.5.7
A presheaf category [$\mathbb{C}^{\text {op }}$, Set $]$ is Cartesian closed.

PROOF

Limits and colimits are computed pointwise, so we get the terminal object and binary products from those in Set. So we need to find function spaces. So, given $Y, Z \in\left[\mathbb{C}^{\text {op }}\right.$, Set $]$, we seek $Z^{Y} \in\left[\mathbb{C}^{\text {op }}\right.$, Set $]$ such that

$$
\left[\mathbb{C}^{\mathrm{op}}, \text { Set }\right]\left(X, Z^{Y}\right) \cong\left[\mathbb{C}^{\mathrm{op}}, \text { Set }\right](X \times Y, Z)
$$

naturally in X and Y. So put

$$
\begin{aligned}
Z^{Y}(U) & =\left[\mathbb{C}^{\mathrm{op}}, \operatorname{Set}\right]\left(H_{U} \times Y, Z\right) \\
& \cong \int_{V}[\mathbb{C}(V, U) \times Y(V), Z(V)] \quad \text { end in Set, products ptwise. }
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[\mathbb{C}^{\mathrm{op}}, \text { Set }\right]\left(X, Z^{Y}\right) } & \cong \int_{U}\left[X(U), Z^{Y}(U)\right] \\
& \cong \int_{U}\left[X(U), \int_{V}[\mathbb{C}(V, U) \times Y(V), Z(V)]\right] \\
& \cong \int_{U} \int_{V}[X(U),[\mathbb{C}(V, U) \times Y(V), Z(V)]] \\
& \cong \int_{V} \int_{U}[X(U),[\mathbb{C}(V, U)[Y(V), Z(V)]]] \\
& \cong \int_{V} \int_{U}[X(U) \times \mathbb{C}(V, U),[Y(V), Z(V)]] \\
& \cong \int_{V}\left[\int^{U} X(U) \times \mathbb{C}(V, U),[Y(V), Z(V)]\right] \\
& \cong \int_{V}[X(V),[Y(V), Z(V)]] \\
& \cong \int_{V}[X(V) \times Y(V), Z(V)] \\
& \cong\left[\mathbb{C}^{\text {op }}, \text { Set }\right](X \times Y, Z)
\end{aligned}
$$

Thus Z^{Y} is a function space as required.

$5 \cdot$ Adjunctions

5.1 • Definitions

DEFINITION 5.1.1
Let $F: \mathcal{C} \rightarrow \mathcal{D}, G: \mathcal{D} \rightarrow \mathcal{C}$ be functors. An adjunction $F \dashv G$ consists of an isomorphism

$$
\mathcal{D}(F X, Y) \cong \mathcal{C}(X, G Y)
$$

that is natural in X and Y. We say F is left adjoint to G, and G is right adjoint to F.
So, we have a correspondence

$$
\begin{array}{ccc}
\text { morphisms } & \leftrightarrow & \text { morphisms } \\
F X \rightarrow Y & X \rightarrow G Y
\end{array}
$$

NOTATION
We write

$$
\begin{array}{rll}
F X & \xrightarrow{g} & Y \\
X & \in \mathcal{D}
\end{array} \quad \text { and } \quad G Y \in \mathcal{C} \quad \begin{array}{cccc}
X & \xrightarrow{\bar{g}} & G Y & \in \mathcal{C} \\
F X \xrightarrow{\bar{f}} & Y & \in \mathcal{D}
\end{array}
$$

We write $\left(^{-}\right)$for the adjunction operation, and call it transpose. Note $\bar{f}=f, \overline{\bar{g}}=g$.

What do the naturality conditions mean? Naturality in X says that, for any $h: X^{\prime} \rightarrow X$,

commutes. Similarly, naturality in Y says that for any $k: Y \rightarrow Y^{\prime}$,

commutes. That is,

$$
\begin{aligned}
& \overline{f \circ h}=\bar{f} \circ F h \quad \overline{k \circ g}=G k \circ \bar{g}
\end{aligned}
$$

Now, this is actually the Yoneda lemma in disguise:

$$
\begin{aligned}
\mathcal{D}(F X, Y) & \cong \mathcal{C}(X, G Y) \\
\text { is } H^{F X} & \cong \mathcal{C}\left(X, G_{-}\right) \\
\text {and } \mathcal{C}(X, G Y) & \cong \mathcal{D}(F X, Y) \\
\text { is } H_{G Y} & \cong D\left(F_{-}, Y\right)
\end{aligned}
$$

Yoneda tells us that each of these natural transforms is completely determined by where the identity goes:

$$
\left.\begin{array}{rl}
F X & \xrightarrow{1_{F X}} \\
X & F X \\
\xrightarrow{\eta_{X}} & G F X
\end{array} \quad \text { and } \quad \begin{array}{c}
G X \\
F G Y \\
\xrightarrow{\varepsilon_{G Y}}
\end{array}\right) Y
$$

Then by naturality,

$$
\begin{array}{rrllll}
\bar{g}=G g \circ \eta_{X} & F X & \xrightarrow{1_{F X}} & F X & \xrightarrow{g} & Y \\
& X & \xrightarrow{\eta_{X}} & G F X & \xrightarrow{G g} & G Y
\end{array}
$$

and

$$
\begin{array}{lrllll}
\bar{f}=\varepsilon_{X} \circ F f & X & \xrightarrow{f} & G Y & \xrightarrow{1_{G Y}} & G Y \\
& F X & \xrightarrow{F f} & F G Y & \xrightarrow{\varepsilon_{Y}} & Y
\end{array}
$$

And in fact, the $\eta_{X}, \varepsilon_{Y}$ are components of a natural transformation. PROPOSITION 5.1.2

Given $F \dashv G$, we have natural transformations η and ε with components given by $\eta_{X}, \varepsilon_{Y}$.

PROOF

Check naturality. For η, given $f: X \rightarrow X^{\prime}$,

must commute. Now, we have:-

X	$\xrightarrow{\eta_{X}}$	$G F X$	$\xrightarrow{G F f}$	$G F X^{\prime}$		
$F X X$	$\xrightarrow{1_{F X}}$	$F X$	$\xrightarrow{F f}$	$F X^{\prime}$	$\xrightarrow{1_{F X^{\prime}}}$	$F X^{\prime}$
	\xrightarrow{f}	X^{\prime}	$\xrightarrow{\eta_{X^{\prime}}}$	$G F X^{\prime}$		

But we have transposed twice, and hence we have equality as required. Similarly for ε. DEFINITION 5.1.3

Given $F \dashv G$, we call $\eta: 1_{\mathcal{C}} \Rightarrow G F$ the unit and $\varepsilon: F G \Rightarrow 1_{\mathcal{D}}$ the counit of the adjunction.

5.2 • Examples

EXAMPLES 5.2.1
Free \dashv forgetful. For example:
$1 U: \mathbf{G p} \rightarrow$ Set has a left adjoint $F \dashv U$, where $F(S)$ gives the free group on S; so we have

$$
\mathbf{G p}(F S, G) \cong \operatorname{Set}(S, U(G))
$$

$2 U: \operatorname{Alg} \longrightarrow$ Vect which forgets the multiplicative structure; we have $F \dashv U$, where $F(V)$ is the free algebra on V.
$3 U$: Ring \longrightarrow Monoid has a left adjoint

$$
\mathbb{Z} \circ_{-}: M \mapsto \mathbb{Z} M=\left\{\text { formal finite combinations } \sum \lambda_{i} m_{i}, \lambda_{i} \in \mathbb{Z}, m_{i} \in M .\right\}
$$

$4 U: \mathbf{A b} \longrightarrow \mathbf{G} \mathbf{p}$ has a left adjoint "free abelianization": $G^{\mathrm{AB}}=G /[G, G]$.
$5 U: \mathbf{A l g}_{k} \rightarrow \mathbf{L i e}_{k}$ has left adjoint $L \mapsto \mathcal{U}(L)=$ universal enveloping algebra of L.
EXAMPLES 5.2.2
Reflections \dashv inclusions \dashv coreflections. If $\mathrm{C} \rightarrow \mathcal{D}$ has a left adjoint, it is called a reflector and exhibits \mathcal{C} as a reflective subset of \mathcal{D}.

1 As above, $\mathbf{A b} \rightarrow \mathbf{G p} ; \mathbf{A b}$ is reflective in $\mathbf{G p}$.
2

$$
\left\{\begin{array}{l}
\text { complete metric spaces, } \\
\text { uniformly cts functions }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { metric spaces, } \\
\text { uniformly cts functions }
\end{array}\right\}
$$

has left adjoint "completion".
3

$$
\left\{\begin{array}{c}
\text { compact Hausdorff spaces, } \\
\text { uniformly cts functions }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { topological spaces } \\
\text { uniformly cts functions }
\end{array}\right\}
$$

has left adjoint Stone-Čech compactification.
$4 \mathrm{Gp} \rightarrow$ Monoid. Gp is reflective and coreflective in Monoid, via

$$
M \mapsto\{m \in M \mid m \text { is invertible }\}
$$

EXAMPLE 5.2.3

Closedness. Let \mathcal{C} be a cartesian closed category. Then for all $B \in \mathcal{C}$, we have

$$
{ }_{-} \times B \dashv()^{B}
$$

i.e.

$$
\mathcal{C}(A \times B, C) \cong \mathcal{C}\left(A, C^{B}\right)
$$

naturally in A and C.
EXAMPLE 5.2.4
Adjoints for representable functors are powers and copowers. Recall given an object $A \in \mathcal{C}$ and a set I, we can form the I-fold power:

$$
A^{I}=\prod_{i \in I} A=[I, A]
$$

and dually the I-fold copower:

$$
I \times A=\coprod_{i \in I} A
$$

By parametrised limits, we get functors:

$$
\begin{gathered}
{\left[{ }_{-}, A\right]: \text { Set } \rightarrow \mathcal{C}^{\text {op }}} \\
\quad \times A: \text { Set } \rightarrow \mathcal{C}
\end{gathered}
$$

Now, $\operatorname{Set}(I, \mathcal{C}(U, A)) \cong \mathcal{C}(U,[I, A]) \cong \mathcal{C}^{o p}([I, A], U)$. So [_, $\left.A\right] \dashv \mathcal{C}\left(_, A\right)=H_{A}$. Similarly ${ }_{-} \times A \dashv \mathcal{C}\left(A,{ }_{-}\right)=H^{A}$, since $\operatorname{Set}(I, \mathcal{C}(A, U)) \cong \mathcal{C}(I \times A, U)$.

So H_{A} has an adjoint iff \mathcal{C} has all small powers of A iff $\mathcal{C}^{\text {op }}$ has all small copowers of A.
If \mathcal{C} has all small powers and copowers of A, we get

$$
\mathcal{C}(I \times A, U) \cong \mathcal{C}(A,[I, U])
$$

via $\operatorname{Set}(I, \mathcal{C}(A, U))$. So $I \times \succ \dashv\left[I,{ }_{-}\right]: \mathcal{C} \rightarrow \mathcal{C}$.

5.3 • Triangle identities

PROPOSITION 5.3.1
Given an adjunction $F \dashv G$, then the unit $\eta: 1 \Rightarrow G F$ and the counit $\varepsilon: F G \Rightarrow 1$ satisfy the triangle identities; that is, the following diagrams commute:

and

PROOF

$$
\begin{array}{rlccl}
G Y & \xrightarrow{\eta_{G Y}} & G F G Y & \xrightarrow{G \varepsilon_{Y}} & G Y \\
\hline F G Y & \xrightarrow{1_{F G Y}} & F G Y & \xrightarrow{\varepsilon_{Y}} & Y \\
& & G Y & \xrightarrow{1_{G Y}} & G Y
\end{array}
$$

THEOREM 5.3.2
An adjunction $F \dashv G$ is completely determined by natural transformations

$$
\begin{aligned}
\eta: 1 & \Rightarrow G F \\
\varepsilon: F G & \Rightarrow 1
\end{aligned}
$$

satisfying the triangle identities.
PROOF
Suppose we are given such ε, η. We need to show that

$$
\mathcal{D}(F X, Y) \cong \mathcal{C}(X, G Y)
$$

naturally in X and Y. So, given $f: X \rightarrow G Y$, put

$$
\bar{f}: F X \xrightarrow{F f} F G Y \xrightarrow{\varepsilon_{Y}} Y
$$

and given $g: F X \longrightarrow Y$, put

$$
\bar{g}: X \xrightarrow{\eta_{X}} G F X \xrightarrow{G g} G Y
$$

We need to check naturality. For naturality in X, we need, given $h: X^{\prime} \rightarrow X$, that $\overline{f h}=$ $\bar{f} \circ F h$. Now,

$$
\begin{aligned}
\overline{f h} & =\varepsilon_{Y} \circ F(f h) \\
& =\left(\varepsilon_{Y} \circ F f\right) \circ F h \\
& =\bar{f} \circ F h .
\end{aligned}
$$

For naturality in Y, we need, for all $k: Y \rightarrow Y^{\prime}, \overline{k g}=G k \circ \bar{g}$. Now,

$$
\begin{aligned}
\overline{k g} & =G(k g) \circ \eta_{Y} \\
& =G k \circ\left(G g \circ \eta_{Y}\right) \\
& =G k \circ \bar{g} .
\end{aligned}
$$

Now we need to check that these are inverse: given $f: X \rightarrow G Y$, we need that $f=\overline{\bar{f}}$. We have

$$
\bar{f}=F X \xrightarrow{F f} F G Y \xrightarrow{\varepsilon_{Y}} Y .
$$

So

Note that the left hand circuit commutes by the naturality of η, and the right hand circuit commutes by the first triangle identity, so $f=\overline{\bar{f}}$. Similarly, given $g: F X \rightarrow Y$,

Here, the left circuit commutes by the second triangle identity, and the right circuit commutes by the naturality of ε; hence $g=\overline{\bar{g}}$, as required.

REMARK
Adjunctions can be composed:

$$
\mathcal{C} \underset{G_{1}}{\stackrel{F_{1}}{\rightleftarrows}} \mathcal{D} \underset{G_{2}}{\stackrel{F_{2}}{\rightleftarrows}} \varepsilon \quad \text { giving } \quad \mathcal{C} \underset{G_{1} G_{2}}{\stackrel{F_{2} F_{1}}{\rightleftarrows}} \varepsilon
$$

from $\mathcal{E}\left(F_{2} F_{1} X, Y\right) \cong \mathcal{D}\left(F_{1} X, G_{2} Y\right) \cong \mathcal{C}\left(X, G_{1} G_{2} Y\right)$.

5.4 • Adjunctions as parametrised representations

To give a left adjoint to $G: \mathcal{D} \rightarrow \mathcal{C}$, it is sufficient to give, for each $X \in \mathcal{C}$, a representation for

$$
\mathcal{C}\left(X, G_{-}\right): \mathcal{D} \longrightarrow \text { Set. }
$$

By parametrised representation, this extends uniquely to a functor which is the left adjoint we are looking for. Dually, a right adjoint to $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a representation for

$$
\mathcal{D}\left(F_{-}, Y\right): \mathcal{C}^{\mathrm{op}} \rightarrow \text { Set. }
$$

Recall " \mathcal{D} has limits of shape \rrbracket " means, for all $D: \square \longrightarrow \mathcal{D}$, there exists a representation of

$$
[0, \mathcal{D}]\left(\Delta_{-}, D\right): \mathcal{D}^{\mathrm{op}} \rightarrow \text { Set }
$$

i.e., \mathcal{D} has limits of shape \rrbracket iff $\Delta_{-}: \mathcal{D} \rightarrow[\square, \mathcal{D}]$ has a right adjoint. Dually, \mathcal{D} has colimits of shape \rrbracket iff $\Delta_{-}: \mathcal{D} \rightarrow[\llbracket, \mathcal{D}]$ has a left adjoint.
5.5 - Adjunctions as collections of initial objects

DEFINITION 5.5.1
Given $G: \mathcal{D} \rightarrow \mathcal{C}$ and $X \in \mathcal{C}$, we define the comma category $(X \downarrow G)$:

- objects are pairs $(f, Y), X \xrightarrow{f} G Y$;
- morphisms $(f, Y) \underset{h}{\rightarrow}\left(f^{\prime}, Y^{\prime}\right)$ are morphisms $Y \underset{h}{\rightarrow} Y^{\prime}$ such that

commutes.
PROPOSITION 5.5.2
To give a left adjoint for $G: \mathcal{D} \rightarrow \mathcal{C}$ is equivalent to giving, for all $X \in \mathcal{C}$, an initial object for the comma category $(X \downarrow G)$.

An initial object in $(X \downarrow G)$ is a pair $\left(u, V_{X}\right)$ with $X \xrightarrow{u} G V_{X}$ such that, for all $X \xrightarrow{f} G Y$, there exists a unique $h: V_{X} \rightarrow Y$ such that

commutes. So

$$
\begin{aligned}
\mathcal{D}\left(V_{X}, Y\right) & \cong \mathcal{C}(X, G Y) \\
f & \mapsto G h \circ u
\end{aligned}
$$

We need to check naturality in Y. So, for all $g: Y \rightarrow Y^{\prime}$, we have

and so on elements

and so this is a representation as required.

5.6 • Duality

We note that there are a lot of duality relations going on with adjunctions:

$$
\begin{array}{ccc}
\text { left adjoint } & \leftrightarrow & \text { right adjoint } \\
\text { unit } & \leftrightarrow & \text { counit } \\
\text { natural in } X & \leftrightarrow & \text { natural in } Y \\
\text { first triangle identity } & \leftrightarrow & \text { second triangle identity }
\end{array}
$$

Why is this? Consider

$$
\begin{array}{cc}
F \dashv G, \mathcal{C} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathcal{D} & \text { also } \\
& G \dashv F, \mathcal{C}^{\mathrm{op}} \underset{G}{\stackrel{F}{\rightleftarrows}} \mathcal{D}^{\mathrm{op}} \\
\mathcal{D}(F X, Y) \cong \mathcal{C}(X, G Y) & \mathcal{D}^{\mathrm{op}}(Y, F X) \cong \mathcal{C}^{\mathrm{op}}(G Y, X) \\
F \dashv G: \mathcal{D} \rightarrow \mathcal{C} & G \dashv F: \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{D}^{\mathrm{op}} \\
\text { unit } \eta_{X}: X \rightarrow G F X & \text { counit } \eta_{X}: G F X \longrightarrow X \\
\text { counit } \varepsilon_{Y}: F G Y \rightarrow Y & \text { unit } \varepsilon_{Y}: Y \rightarrow F G Y
\end{array}
$$

6 - Adjoint functor theorems

6.1 - Preservation

THEOREM 6.1.1
Suppose $F \dashv G: \mathcal{D} \rightarrow \mathcal{C}$. Then G preserves limits, and F preserves colimits.
proof
Consider $D: \square \rightarrow \mathcal{D}$ with limit cone $\left(\int_{I} D I \xrightarrow{k_{I}} D I\right)_{I \in I}$. We need to show that G of it is a limit cone for $G D: \square \rightarrow \mathcal{C}$. The cone becomes

$$
\left(G \int_{I} D I \xrightarrow{G k_{l}} G D I\right)_{I \in \| \cdot} .
$$

We need a natural transformations $\mathcal{C}\left(, G \int_{I} D I\right) \cong[0, \mathcal{C}]\left(\Delta_{-}, G D\right)$ with components

$$
\begin{aligned}
\mathcal{C}\left(V, G \int_{I} D I\right) & \cong[\square, \mathcal{C}](\Delta V, G D) \\
f & \mapsto\left(G k_{I} \circ f\right)_{I \in \rrbracket}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\mathcal{C}\left(V, G \int_{I} D I\right) & \cong \mathcal{D}\left(F V, \int_{I} D I\right) \\
& \cong \int_{I} \mathcal{D}(F V, D I) \\
& \cong \int_{I} \mathcal{C}(V, G D I) \\
& \cong[0, \mathcal{C}](\Delta V, G D) .
\end{aligned}
$$

And on projections:

$$
\begin{aligned}
& f \mapsto \bar{f} \\
& \quad \mapsto k_{I} \circ \bar{f} \\
& \quad \mapsto G k_{I} \circ f
\end{aligned}
$$

as required; and dually for F.
6.2 - General adjoint functor theorem

DEFINITION 6.2.1
Given a category \mathcal{A}, a collection $\llbracket \subseteq \mathcal{A}$ is weakly initial if for all $A \in \mathcal{A}$, there exists a morphism $I \rightarrow A$ for some $I \in \mathbb{D}$.

EXAMPLE
\{initial object\} is a weakly initial set.

THEOREM 6.2.2 (GENERAL ADJOINT FUNCTOR THEOREM)

Suppose we have a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ that preserves small limits, and that \mathcal{D} is locally small and complete. Then G has a left adjoint iff for all $X \in \mathcal{C}$, the category $(X \downarrow G)$ has a weakly initial set.
This last condition is known as the solution set condition.

PROOF

Here is the general structure of the proof:

where we define $P:(X \downarrow G) \rightarrow \mathcal{D}$ to be the obvious forgetful functor. So:

LEMMA 1

$P:(X \downarrow G) \longrightarrow \mathcal{D}$ creates small limits.

PROOF

Let $D: \llbracket \rightarrow(X \downarrow G)$ be a diagram. We need to show that, if $P D$ has a limit cone, then there is a cone

$$
\left(V \xrightarrow{c_{I}} D I\right)_{I \in \rrbracket}
$$

in $(X \downarrow G)$ such that $\left(P V \xrightarrow{P c_{I}} P D I\right)_{I \in \square}$ is a limit for $P D$ in \mathcal{D}, and that any such cone is itself a limit for D in $(X \downarrow G)$.

1 Suppose $P D: \llbracket \longrightarrow \mathcal{D}$ has a limit cone, say $\left(L \xrightarrow{c_{I}} P D I\right)_{I \in \rrbracket}$:

$2 G$ preserves small limits, so $\left(G L \xrightarrow{G c_{I}} G P D I\right)_{I \in \emptyset}$ is a limit for $G P D$ in \mathcal{C}.

$3(D I)_{I \in \rrbracket}$ gives a diagram in $(X \downarrow G)$

which is precisely a cone $(X \rightarrow G P D I)_{I \in \square}$ in \mathcal{C}. Hence we induce a unique morphism $u: X \rightarrow G L$ making everything commute:

4 Since everything in the diagram commutes, it forms a cone over D in $(X \downarrow G)$, with vertex $V=(X \xrightarrow{u} G L)$. Moreover, by construction is it unique such that applying P to it gives the original cone $\left(L \xrightarrow{c_{I}} P D I\right)_{I \in \square}$. So we have shown that, given a limit cone for $P D$ there is a unique cone in $(X \downarrow G)$ that maps to it, given by (1) above. It remains to show that this cone is universal.
5 Given any cone $((X \xrightarrow{f} G Y) \rightarrow D I)_{I \in \square}$ in $(X \downarrow G)$, we seek a unique factorisation $(X$ $\xrightarrow{f} G Y) \longrightarrow V:$

Applying P, we get a cone $(Y \rightarrow P D I)_{I \in \rrbracket}$ in \mathcal{D}, and since L is a limit, this induces a unique morphism $h: Y \rightarrow L$ making everything commute in \mathcal{D}. But now, by the uniqueness of u we have $G h \circ f=u$, since $G h \circ f$ satisfies the conditions making u unique. So h is a morphism in $(X \downarrow G)$:

and so is the unique factorisation as required. So the cone (1) is indeed universal and P creates limits as required.
So now we can quickly deduce

LEMMA 2

For each $X \in \mathcal{C},(X \downarrow G)$ is locally small and complete.

PROOF

Since \mathcal{D} is locally small, so too is $(X \downarrow G)$. Now, let D be a diagram in ($X \downarrow G$). Apply P to get a diagram $P D$ in \mathcal{D}. This has a limit, since \mathcal{D} is complete. And by lemma 1, P creates it from a limit in $(X \downarrow G)$; i.e. D has a limit in $(X \downarrow G)$. So $(X \downarrow G)$ is complete.
Now, we need only prove

If \mathcal{A} is locally small and complete, then \mathcal{A} has an initial object iff \mathcal{A} has a weakly initial set.

PROOF

\Rightarrow is clear; so we need to show \Leftarrow. So let $\mathbb{\square}$ be a weakly initial set in \mathcal{A}. We need to construct an initial object from 0 .

So, set $P=\prod_{I \in \rrbracket} I$. This is a small product, since $\mathbb{1}$ is a set. Now set L to be a limit over the diagram of all morphisms $P \Longrightarrow P$; this is a small limit since \mathcal{A} is locally small. We claim that L is initial in \mathcal{A}. Note that L has projections

Now:
$k=k^{\prime}$ since all triangles commute, and we have $1_{P}: P \rightarrow P$;
for all $f: P \rightarrow P, f k=k$, since all triangles commute;
$3 k$ is monic (c.f. proof that an equaliser is monic).
We immediately have that I weakly initial $\Rightarrow\{P\}$ weakly initial $\Rightarrow\{L\}$ weakly initial. So for all $A \in \mathcal{A}$, there exists a morphism $L \rightarrow A$.

We need to show this morphism is unique. So suppose we have $L \underset{t}{\stackrel{s}{\leftrightarrows}} A$. Consider

where $E \xrightarrow{e} L$ is an equaliser of s and t.
Now, $(k e m) k=k$ by (1) above. But k is monic, and $k(e m k)=k \circ 1$, so $e m k=1$. Now $s e=t e$ since e is an equaliser. Hence

$$
s=\operatorname{sem} k=t e m k=t
$$

as required. So L is indeed an initial object.
So now by lemmas 2 and 3 together with Proposition 5.5.2, we deduce that G has a left adjoint iff, for each $X \in \mathcal{C},(X \downarrow G)$ has a weakly initial set, as required.
6.3 - Special adjoint functor theorem

DEFINITION 6.3.1
Consider monics $A \longmapsto X$. Define $a \leqslant b$ iff $\exists c: A \longrightarrow B$ such that

commutes. Observe that if there exists such a c, then it is unique (since b is monic) and monic (since a is monic). Now, set $a \sim b$ iff $a \leqslant b$ and $b \leqslant a$. The equivalence classes under \sim are called subobjects of X.
definition 6.3.2
A category \mathcal{C} is wellpowered iff for all $X \in \mathcal{C}$, the collection of subobjects of X is a set; equivalently, iff there exists a set of representing monics into X.

definition 6.3.3

A collection $\mathbb{B} \rightarrow \mathcal{D}$ is cogenerating if whenever $X \underset{g}{\stackrel{f}{\rightrightarrows}} Y$ such that

$$
\forall Y \xrightarrow{b} B, B \in \mathbb{B}, b f=b g
$$

then $f=g$.
THEOREM 6.3.4 (SPECIAL ADJOINT FUNCTOR THEOREM)
Suppose $G: \mathcal{D} \rightarrow \mathcal{C}$ such that

- \mathfrak{C} is locally small;
- \mathcal{D} is locally small, complete, well-powered and has a cogenerating set;

Then G has a left adjoint iff it preserves limits.

proof

\Rightarrow is clear; the point is \Leftarrow. We aim to show that each $(X \downarrow G)$ has a weakly initial set, so we can apply GAFT. That is, given any $X \in \mathcal{C}$, we find a set $\mathbb{A} \subseteq(X \downarrow G)$ such that for each $f: X \rightarrow G Y \in(X \downarrow G)$, there exists morphism

for some $X \xrightarrow{a} G A \in \mathbb{A}$. So we fix X and construct such a set \mathbb{A}. Let \mathbb{B} be a cogenerating set in \mathcal{D}.

1 Put

$$
Q_{X}=\prod_{\substack{x \\ X \in G B, B \in \mathbb{B}}} B
$$

with projections $Q_{X} \xrightarrow{q_{x}} B$ (one for each $X \xrightarrow{x} G B$). This is a small product since \mathbb{B} is a set and \mathcal{C} is locally small.

$2 \mathcal{D}$ is well-powered, so pick a set of representing monics into Q_{X} (i.e. one monic for each
isomorphism class). Write $\mathbb{M}=\{$ representing monics $A \longmapsto Q\}$.

3 Put

$$
\mathbb{A}=\left\{X \xrightarrow{a} G A \text { such that } \exists A \stackrel{m}{\longrightarrow} Q_{X} \in \mathbb{M}\right\} \subseteq(X \downarrow G) .
$$

This is a set since \mathbb{M} is a set and \mathcal{C} is locally small. We claim that \mathbb{A} is the desired weakly initial set in $(X \downarrow G)$. So we need to show, given any $f: X \rightarrow G Y \in(X \downarrow G)$, that there exists

with $X \xrightarrow{a} G A \in \mathbb{A}$. So we fix $X \xrightarrow{f} G Y$ and seek such a triangle.
4 Put

$$
P_{Y}=\prod_{\substack{y: Y \rightarrow B \\ B \in \mathbb{B}}} B
$$

with projections $P_{Y} \xrightarrow{p_{y}} B$ (one for each $y: Y \rightarrow B$.

AIM

- form $Y \rightarrow P_{Y}$, show monic;
- form $Q_{X} \rightarrow P_{Y}$;
- take pullback; G preserves pullbacks;
- form $X \rightarrow G Q_{X}$ making outside commute;
- induce $X \xrightarrow{a} G A$ as required;
- $a \in \mathbb{A}$ since g monic.

5 Induce $T \xrightarrow{d} P_{Y}$ by the universal property of the product P_{Y} :

So we get unique d such that

$$
\begin{equation*}
\forall y: Y \rightarrow B, \quad p_{y} \circ d=y \tag{1}
\end{equation*}
$$

We show that d is monic; suppose we have $\underset{t}{\stackrel{s}{\longrightarrow}} Y \xrightarrow{d} P_{Y}$ with $d s=d t$. Then certainly, for all $y: Y \rightarrow B, p_{y} d s=p_{y} d t$. So by (1), for all $y: Y \rightarrow B, y s=y t$. Hence $s=t$ since \mathbb{B} is cogenerating. Hence d is monic.
6 Induce $Q_{X} \xrightarrow{e} P_{Y}$ by the universal property of product P_{Y}. To use this, we need to find for each $Y_{\overparen{y}} B$ a morphism $Q_{X} \rightarrow B$.
Now, we have a projection $Q_{X} \xrightarrow{q_{x}} B$ for all $x: X \rightarrow G B$, and given any $Y \xrightarrow{y} B$, we certainly have a morphism

$$
x=X \xrightarrow{f} G Y \xrightarrow{G y} G B
$$

so we can use projections $q_{G y o f}: Q_{X} \rightarrow B$:

inducing a unique $e: Q_{X} \rightarrow P_{Y}$ such that

$$
\begin{equation*}
\forall y: Y \rightarrow B, \quad q_{G y \circ f}=p_{y} \circ e \tag{2}
\end{equation*}
$$

7 Form the pullback

Now d is monic, so g is monic; without loss of generality we can assume g is a representing monic (since it must be isomorphic to one, so we can take an isomorphic pullback). G preserves pullbacks so

is also a pullback.
8 Induce $X \xrightarrow{h} G Q_{X}$ by the universal property of the product $G Q_{X}$. Since G preserves limits, $G Q_{X}$ is indeed a product,

$$
G Q_{X}=\prod_{\substack{x \\ x \rightarrow G B \\ B \in \mathbb{B}}} G B
$$

with projections $G Q_{X} \xrightarrow{G q_{x}} G B$, one for each $\left.x: X \rightarrow G B, B \in \mathbb{B}\right)$.

So we have unique h such that

$$
\begin{equation*}
\forall x: X \rightarrow G B, \quad G q_{x} \circ h=x \tag{3}
\end{equation*}
$$

9 We now show that the outside of the diagram $\left(^{*}\right)$ commutes, using the universal property of the product $G P_{Y}$. For each $y: Y \rightarrow B$, we have the following diagram:

Now, the outside commutes by (3), and the triangles commute as shown. So we need show that $G e \circ h=G d \circ f$.

AIM
We use the universal property of the product $G P_{Y}$ to induce a unique k such that for all $y: Y \rightarrow B, G p_{y} \circ k=G y \circ f$; then we show that $G e \circ h$ and $G d \circ f$ both satisfy this condition.
$10 G$ preserves limits, so $G P_{Y}$ is a product

$$
G P_{Y}=\prod_{\substack{y: Y \rightarrow B \\ B \in \mathbb{B}}} G B
$$

with projections $G P_{Y} \xrightarrow{G p_{y}} G B$. Now, for each $y: Y \rightarrow B$ we have a morphism $X \xrightarrow{G g \circ f} G B$:

inducing a unique $k: X \rightarrow G P_{Y}$ such that

$$
\begin{equation*}
\forall y: Y \rightarrow B, \quad G p_{y} \circ k=G y \circ f \tag{4}
\end{equation*}
$$

$11 G e \circ h$ and $G d \circ f$ both satisfy this condition, since for all $y: Y \rightarrow B$, we have

$$
G p_{y} \circ G d \circ f=G\left(p_{y} \circ d\right) \circ f \stackrel{(1)}{=} G y \circ f
$$

and

$$
G p_{y} \circ G e \circ h=G\left(p_{y} \circ e\right) \circ h \stackrel{(2)}{=} G q_{G y \circ f} \circ h \stackrel{(3)}{=} G y \circ f .
$$

Hence by the uniqueness of k, we have $G e \circ h=G d \circ f$ and so the outside of (${ }^{*}$) commutes.
12 Induce $X \xrightarrow{a} G A$ by the universal property of pullback (as in (*)). Then $X \xrightarrow{a} G A \in \mathbb{A}$ since there exists monic $A \stackrel{g}{\longrightarrow} Q_{X} \in \mathbb{M}$, and we have a commuting triangle

in $\left(^{*}\right)$ as required.
So \mathbb{A} is indeed weakly initial, and hence $(X \downarrow G)$ has a weakly initial set for all $X \in \mathcal{C}$. So finally, since \mathcal{D} is locally small and complete, we can apply GAFT to see that G has a left adjoint.

7 • Monads and comonads

7.1 • Monads

Suppose we have an adjunction $F \dashv G: \mathcal{D} \rightarrow \mathcal{C}$. Write $T=G F: \mathcal{C} \longrightarrow \mathcal{C}$. We have natural transformations

$$
\begin{array}{rlrl}
\eta: 1_{\mathcal{C}} & \Rightarrow G F=T & & \eta_{X}: X \rightarrow T X \\
G \varepsilon F: G F G F & \Rightarrow G F & \\
\text { write as } \mu: T^{2} & \Rightarrow T & \mu_{X}: T^{2} X \rightarrow T X
\end{array}
$$

We can think of $\eta: 1_{\mathcal{C}} \rightarrow T$ as a "unit" and $\mu: T^{2} \rightarrow T$ as "multiplication". PROPOSITION 7.1.1

Under the above conditions, the following diagrams commute:
1 Unit law:

i.e. $\forall X$
 commutes.

2 Associativity:

PROOF
1

commutes, since the left hand triangle is G of the triangle identity, and the right hand triangle is the triangle identity of $F X$.

2

commutes as it is G of the naturality square of ε.
DEFINITION 7.1.2
A monad on a category \mathcal{C} consists of a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ and natural transformations

$$
\begin{array}{rr}
\eta: 1 & \Rightarrow T \\
\mu: T^{2} & \Rightarrow T
\end{array} \quad \text { "mult" }
$$

satisfying the unit and associativity laws as above.
EXAMPLES 7.1.3

1

$$
\begin{aligned}
()^{*}: \text { Set } & \longrightarrow \text { Set } \\
A & \mapsto A^{*}
\end{aligned}
$$

Where $A^{*}=\left\{\right.$ lists $\left(a_{1}, \ldots, a_{n}\right) \mid n \geqslant 0$, each $\left.a_{i} \in A\right\}$. Put

$$
\begin{aligned}
\eta_{A}: A & \longrightarrow T A=A^{*} \\
a & \mapsto(a)
\end{aligned}
$$

and

$$
\begin{aligned}
\mu_{A}: A^{* *} & \rightarrow A \\
\left(\left(a_{11}, \ldots, a_{1 n_{1}}\right), \ldots,\left(a_{k 1}, \ldots, a_{k n_{k}}\right)\right) & \mapsto\left(a_{11}, \ldots, a_{1 n_{1}}, \ldots, a_{k 1}, \ldots, a_{k n_{k}}\right)
\end{aligned}
$$

Then $\left(()^{*}, \eta, \mu\right)$ is a monad on Set - the "free monoid monad".
2 The identity functor is a monad.

3 Let (M, e, \cdot) be a monoid. Then we have

$$
M \times{ }_{-}: \text {Set } \rightarrow \text { Set },
$$

which we can equip with a monad structure. So set

$$
\begin{aligned}
\eta_{X}: X & \mapsto M \times X \\
x & \mapsto(e, x) \\
\mu_{X}: M \times(M \times X) & \mapsto M \times X \\
\left(m_{1},\left(m_{2}, x\right)\right) & \mapsto\left(m_{1} m_{2}, x\right)
\end{aligned}
$$

Then the unit and associativity laws for the monad follow precisely from those for the monoid.

DEFINITION 7.1.4

Dually we have comonads, a functor $L: \mathcal{D} \longrightarrow \mathcal{D}$ with $1_{\mathcal{D}} \stackrel{\varepsilon}{\Leftarrow} L \stackrel{\delta}{\Rightarrow} L^{2}$ satisfying the dual of the monad axioms.

7.2 • Algebras for a monad

DEFINITION 7.2.1

Let (T, η, μ) be a monad for \mathcal{C}. An algebra for T consists of an object $A \in \mathcal{C}$ together with a morphism $T A \xrightarrow{\theta} A \in \mathcal{C}$ such that the following diagrams commute:

A map of algebras $(T A \xrightarrow{\theta} A) \rightarrow(T B \xrightarrow{\varphi} B)$ is a morphism $A \xrightarrow{f} B$ such that

commutes. T-algebras and their maps form a category which we denote by \mathcal{C}^{T}.
EXAMPLES 7.2.2
$1 T=()^{*}:$ Set \rightarrow Set. A T-algebra is precisely a monoid. For an algebra is a set A and a function $A^{*} \xrightarrow{\theta} A$ giving multiplication:

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots, a_{n}\right) & \mapsto a_{1} a_{2} \ldots a_{n} \\
() & \mapsto e
\end{aligned}
$$

The monad axioms tell us that the multiplication on A must be associative.
$2 T=$ id. Then $\mathcal{C}^{T} \cong \mathcal{C}$.
$3 T=M \times{ }_{\ldots} . T$-algebras are sets with a monoid action: $M \times A \xrightarrow{\theta} A$.

7.3 • Free algebras

We can define a forgetful functor:

$$
\begin{aligned}
U: \mathcal{C}^{T} & \mapsto \mathcal{C} \\
(T A \xrightarrow{\theta} A) & \mapsto A \\
A \xrightarrow{f} B & \mapsto f
\end{aligned}
$$

We may ask two obvious questions: does U have a left adjoint; and does T arise naturally from an adjunction?

PROPOSITION 7.3.1
U has a left adjoint $F: \mathcal{C} \longrightarrow \mathcal{C}^{T}$.
PROOF
We construct F as follows:

- on objects, $F A=\left(\begin{array}{c}T^{2} A \\ \downarrow \mu_{A} \\ T A\end{array}\right)$, the "free algebra on A ";
- on morphisms, $F(A \xrightarrow{f} B)=\left(\begin{array}{c}T^{2} A \\ \stackrel{\mu_{A}}{A} \\ T A\end{array}\right) \xrightarrow{T f}\left(\begin{array}{c}T^{2} B \\ \mu_{B} \\ T B\end{array}\right)$.

We need to check three things: that $F A$ and $F f$ satisfy the axioms for an algebra and a map of algebras; that F is functorial; and that F is left adjoint to U. So:
${ }_{1} F A$ is a T-algebra:

by unit law for T

by associativity law for T.

And $F f$ is a map of algebras:

by naturality of μ.
2 The functoriality of F follows from that of T.
3 We need to show that

$$
\mathcal{C}^{T}\left(\begin{array}{cc}
& T B \\
F A, & \downarrow \theta \\
& B
\end{array}\right) \cong \mathcal{C}(A, B)
$$

naturally in A and B. We construct an isomorphism as follows:
a Given a map of algebras in the LHS

we take $A \xrightarrow{\eta_{A}} T A \rightarrow B \in \mathcal{C}(A, B)$. Naturality follows from that of η.
b Given a morphism $A \xrightarrow{f} B$ in the RHS, we construct an algebra map

The left hand square commutes by naturality of μ; the right hand square commutes by the second T-algebra axiom. Hence the outside square commutes, i.e. it is a map of algebras.
c We show that these are mutually inverse:

- Starting with $f: A \rightarrow B$ on the RHS, we get taken to $\theta \circ T f$ on the left hand side, and thence to $\theta \circ T f \circ \eta_{A}$. So we need to show $\theta \circ T f \circ \eta_{A}=f$. We have:

The left hand square commutes by naturality of η and the right hand triangle by the first T-algebra axiom. So we are done.

- Starting with $g: T A \rightarrow B$ on the LHS, we go to $g \circ \eta_{A}$ and then to $\theta \circ T\left(g \circ \eta_{A}\right)$. This time we have:

where the left hand triangle commutes by the unit law for T, and the right hand square commutes since g is a T-algebra map.

So we have our adjunction as required.

PROPOSITION 7.3.2

The adjunction $F \dashv U$ gives rise to the $\operatorname{monad}(T, \eta, \mu)$.

PROOF

Recall that the adjunction $\left(F, U, \eta^{\prime}, \varepsilon^{\prime}\right)$ gives rise to a monad $\left(U F, \eta^{\prime}, U \varepsilon^{\prime} F\right)$. So we need to check that $\left(U F, \eta^{\prime}, U \varepsilon^{\prime} F\right)=(T, \eta, \mu)$.

1 It is easy to see that $U F=T$.
2 Recall the adjunction $\left(\mathcal{C}^{T}(F A, T B \xrightarrow{\theta} B) \cong \mathcal{C}(A, B)\right.$ takes g to $g \circ \eta_{A}$. So the unit η_{A}^{\prime} is given by

$$
1_{F A} \mapsto 1_{F A} \circ \eta_{A}=\eta_{A}
$$

as required.
3 Recall

$$
\mathcal{C}\left(A, U\left(\begin{array}{c}
T B \\
\downarrow \theta \\
B
\end{array}\right)\right) \cong \mathcal{C}^{T}\left(\begin{array}{cc}
& T B \\
F A, & \downarrow \theta \\
& B
\end{array}\right)
$$

has $f \mapsto \theta \circ T f$. So the counit ε_{X}^{\prime} at $X=T B \xrightarrow{\theta} B$ is given by

$$
1_{U X} \mapsto \theta \circ T 1=\theta
$$

We need to show $U \varepsilon_{F A}^{\prime}=\mu_{A}$. But $F A=\left(\begin{array}{c}T^{2} A \\ \mid \mu_{A} \\ T A\end{array}\right)$ so $U \varepsilon_{F A}^{\prime}=\mu_{A}$ as required.

8 - Monadicity

8.1 • Introduction

DEFINITION 8.1.1
Given a monad $T: \mathcal{C} \rightarrow \mathcal{C}$, we define a category Adj T with

- objects $\mathcal{C} \underset{G}{\stackrel{F}{\longleftrightarrow}} \mathcal{D}$ inducing T;
- morphisms

It is possible to show that in fact $F^{T} \dashv U^{T}$ is a terminal object in Adj T; so given $F \dashv G$, we get a unique morphism K in Adj $G F$:

8.2 • Eilenberg-Moore Comparison Functor

DEFINITION 8.2.1
Given an adjunction $F \dashv G: \mathcal{D} \rightarrow \mathcal{C}$, the Eilenberg-Moore comparison function K is the unique morphism K in Adj GF:

and is given by:

- on objects, $K Y=\begin{gathered}G F G Y \\ \underset{G Y}{\downarrow} \varepsilon_{Y}\end{gathered}$
- on morphisms, $K(Y \xrightarrow{f} Z)=G F G Y \xrightarrow{G F G f} G F G Z$,

We need to check that K is in fact well defined; i.e. that $K Y$ is an algebra and that $K f$ is a map of algebras. For $K Y$ we have

which commutes by the first triangle identity, and

which commutes by naturality of ε. Similarly for $K f$, we have

commuting by the naturality of ε. And clearly K is functorial (since G is), and the following diagrams commute:

DEFINITION 8.2.2
An adjunction $F \dashv G$ is called monadic if the Eilenberg-Moore comparison functor is an equivalence of categories. A functor G is called monadic if it has a left adjoint F with $F \dashv G$ monadic. A category \mathcal{D} with an understood forgetful functor $\mathcal{D} \underset{U}{ } \mathcal{C}$ is called monadic over \mathcal{C} if U is monadic.

EXAMPLES 8.2.3
1 Gp is monadic over Set;
2 Vect is monadic over Set;
3 Cpct Haus is monadic over Set;
4 Top is not monadic over Set;
5 Poset is not monadic over Set.

8.3 • Monadicity theorems

Suppose we have an adjunction $F \dashv G: \mathcal{D} \rightarrow \mathcal{C}$ giving rise to a monad $T=G F$. Asking whether $F \dashv G$ is monadic is essentially asking when \mathcal{D} "looks like" \mathcal{C}^{T}, and when G "looks like" U^{T}. So what do \mathcal{C}^{T} and U^{T} actually look like?

FACTS
1 Every algebra is a coequaliser of free algebras. Intuitively we can see this from "ordinary" algebra, where every algebra isa quotient of a free algebra. So monadicity theorems are all about existence, preservation, reflection and creation of special kinds of coequaliser.
$2 U^{T}$ creates ' U^{T}-special' coequalisers. In fact this property characterises monadicity. Hence we arrive at our first attempt at a monadicity theorem:

THEOREM

G is monadic iff G creates G-special coequalisers.
Look more closely at (1). We want \mathcal{D} to be like \mathcal{C}^{T}. So certainly we would like every object in \mathcal{D} to be a coequaliser of free objects, i.e. objects of the form FX. This says that "the objects we do have look like algebras", i.e. that K is full and faithful.

We also need to show that we "have all of them", i.e. that K is essentially surjective. So does K hit all of the coequalisers? That is, can we find something in \mathcal{D} which goes to each coequaliser? Well, if \mathcal{D} has all the "special coequalisers" and G preserves them, then we can lift along U^{T}, so seeing that K sends it to the right place. Hence we get

THEOREM
$F \dashv G$ is monadic iff \mathcal{D} has and G preserves G-very-special coequalisers, and every object of \mathcal{D} is a coequaliser of free ones.

Can we avoid mentioning free objects in \mathcal{D} ? In fact, the coequaliser in question is $\xrightarrow[F G \varepsilon_{Y}]{\stackrel{\varepsilon_{F G Y}}{\longrightarrow}} \stackrel{\varepsilon_{Y}}{\longrightarrow}$; and G of this is a coequaliser in \mathcal{C}, so it suffices to prove that G reflects these. So K is full and faithful iff G reflects G-very-special coequalisers. Hence

THEOREM
G is monadic iff \mathcal{D} has and G preserves and reflects G-very-special-coequalisers.

8.4 • Background on coequalisers

DEFINITION 8.4.1
A split coequaliser is a fork $A \underset{g}{\stackrel{f}{\longrightarrow}} B \xrightarrow{e} C$ (i.e. ef $=e g$) with a splitting

such that $e s=1_{C}, f t=1_{B}$ and $g t=s e$.
PROPOSITION 8.4.2
A split coequaliser is a coequaliser.
PROOF
Suppose we have a fork $A \underset{g}{\stackrel{f}{马}} B \xrightarrow{h} D$, say, so that $h f=h g$. We need to show that there exists a unique $C \xrightarrow{k} D$ such that

commutes. Now consider $h s: C \rightarrow D$. We have

$$
\begin{aligned}
h s e & =h g t \\
& =h f t \\
& =h
\end{aligned}
$$

so $h s$ certainly makes the diagram commute. And suppose k is any other such; then

$$
k e=h=h s e \quad \Rightarrow \quad k e s=h s e s \quad \Rightarrow \quad k=h s
$$

so $h s$ is the unique such.
DEFINITION 8.4.3
An absolute coequaliser is a coequaliser that is preserved as a coequaliser by any functor. PROPOSITION 8.4.4

A split coequaliser is an absolute coequaliser.
PROOF
A split coequaliser is defined entirely by a commutative diagram.
PROPOSITION 8.4.5

TA

For any T-algebra $\underset{A}{\underset{A}{\mid}}$, the following is a split coequaliser:

$$
T^{2} A \xrightarrow[T \theta]{\stackrel{\mu_{A}}{\longrightarrow}} T A \xrightarrow{\theta} A
$$

PROOF
We exhibit a splitting
 For:
$1 \theta \eta_{A}=1_{A}$ by the unit axiom for T-algebras.
$2 \mu_{A} \eta_{T A}=1_{T A}$ by the unit axiom for the monad T.
$3 T \theta \circ \eta_{T A}=\eta_{A} \circ \theta$ by the naturality of η.
DEFINITIONS 8.4.6

- An absolute coequaliser pair is a pair $\underset{g}{\stackrel{f}{\Longrightarrow}}$ that has an absolute coequaliser.
- A G-absolute coequaliser pair is a pair f, g such that $\underset{G g}{\stackrel{G f}{\longrightarrow}}$ has an absolute coequaliser.
- A split coequaliser pair is a pair $\xrightarrow[g]{\stackrel{f}{马}}$ that has a split coequaliser.
- A G-split coequaliser pair is a pair f, g such that $\underset{G g}{\stackrel{G f}{\longrightarrow}}$ has a split coequaliser.

In our earlier terminology, a " G-special coequaliser" is a coequaliser of a G-absolute-coequaliser pair. and a " G-very-special coequaliser" is a coequaliser of a G-split-coequaliser pair.

PROPOSITION 8.4.7
$F G F G Y \xrightarrow[F G \varepsilon_{Y}]{\varepsilon_{F G Y}} F G Y$ is a G-split coequaliser pair.
PROOF
GFGY
Recall $K Y=\underset{G Y}{\downarrow_{G}}$ is an algebra. Hence by previous result

$$
G F G F G Y \xrightarrow[G F G \varepsilon_{Y}]{\stackrel{G \varepsilon_{F G Y}}{\longrightarrow}} G F G Y \xrightarrow{G \varepsilon_{Y}} G Y
$$

is a split coequaliser.
8.5 • Beck's Monadicity Theorem

THEOREM 8.5.1
Let $F \dashv G: \mathcal{D} \longrightarrow \mathcal{C}$. Then the following are equivalent:
1 The adjunction is monadic;
$2 G$ creates coequalisers for all G-absolute-coequaliser pairs;
$3 \mathcal{D}$ has coequalisers of all G-split coequaliser pairs, and G preserves and reflects them.
To prove this, we shall first prove a series of propositions.

PROPOSITION 8.5.2

$U^{T}: \mathcal{C}^{T} \rightarrow \mathcal{C}$ creates coequalisers for all U^{T}-absolute-coequaliser pairs.

PROOF

A U^{T}-absolute-coequaliser pair is a pair of morphisms $A \underset{g}{\stackrel{f}{\longrightarrow}} B$ such that

"serially commutes", and such that $A \underset{g}{\stackrel{f}{\longrightarrow}} B$ has an absolute coequaliser $\mathcal{A} \underset{g}{f} B \xrightarrow{e} C$ in \mathcal{C}. We aim to show that there is a unique lift to a fork

in \mathcal{C}^{T}, and that it is a coequaliser in \mathcal{C}^{T}.
1 Induce unique ψ by the universal property of coequaliser; the bottom fork is an absolute coequaliser, hence preserved by T; so the top fork is also a coequaliser. Now,

$$
e \circ \varphi \circ T f=e \circ f \circ \theta=e \circ g \circ \theta=e \circ \varphi \circ T g
$$

so this induces a unique ψ making the right hand square commute.
2 We show that $T C \xrightarrow{\psi} C$ is an algebra. For the first axiom, consider the diagram:

We need to show the right hand triangle commutes. But everything else commutes, and e is epic (since a coequaliser). Hence the right hand triangle commutes. Similarly, for the second axiom, consider:

We need to show the right hand face commutes. But everything else commutes and $T^{2} e$ is epic (since a coequaliser); hence the right hand square does commute.
3 It remains to check that the given fork is a coequaliser in \mathcal{C}^{T}. Consider:

where we induce the unique \bar{h} by the bottom coequaliser. Then since $T e$ is epic, the right hand square commutes, exhibiting \bar{h} as a unique factorisation in \mathcal{C}^{T} as required.

PROPOSITION 8.5.3

For any algebra $T A \xrightarrow{\theta} A$, the following diagram is a coequaliser in \mathfrak{C}^{T} :

PROOF
Observe that this diagram serially commutes, i.e. it is a fork. Also note that U^{T} of it is an absolute coequaliser (by Prop 8.4.5). Since U^{T} creates and in particular reflects coequalisers for U^{T}-absolute coequaliser pairs, this fork must itself be a coequaliser.

PROPOSITION 8.5.4
K is full and faithful iff the following diagram is a coequaliser for all $A \in \mathcal{D}$:

$$
F G F G A \xrightarrow[F G \varepsilon_{A}]{\varepsilon_{F G A}} F G A \xrightarrow{\varepsilon_{A}} A
$$

PROOF

The right hand side says: given any $m: F G A \rightarrow B$ such that $m \circ \varepsilon_{F G A}=m \circ F G \varepsilon_{A}$, there exists a unique $f: A \rightarrow B$ such that $f \circ \varepsilon_{A}=m$. The left hand side says:

$$
\begin{aligned}
K: \mathcal{D}(A, B) & \rightarrow \mathcal{C}^{T}(K A, K B) \\
f & \mapsto G f
\end{aligned}
$$

is a bijection for all $A, B \in \mathcal{D}$ (recall $K f=G f$). That is, given any $h: K A \rightarrow K B$, there is a unique $f: A \rightarrow B$ such that $h=G f$. But:

CLAIM
A map $h: K A \rightarrow K B$ is precisely a map $G A \xrightarrow{h} G B$ such that $\bar{h} \circ \varepsilon_{F G A}=\bar{h} \circ F G \varepsilon_{A}$.

PROOF

Such an h makes

commute; i.e. $h \circ G \varepsilon_{A}=G \varepsilon_{B} \circ G F H$. Now:

$$
\begin{array}{rllll}
G F G A & \xrightarrow{G \varepsilon_{A}} & G A & \xrightarrow{h} & G B \\
\hline F G F G A & \xrightarrow{F G \varepsilon_{A}} & F G A & \xrightarrow{\bar{h}} & G B
\end{array}
$$

along the leftish leg, and

$G F G A$	$\xrightarrow{1_{G F G A}}$	$G F G A$	$\xrightarrow{G F h}$	$G F G B$	$\xrightarrow{G \varepsilon_{B}}$	$G B$
$F G F G A$	$\xrightarrow{\varepsilon_{F G A}}$	$F G A$	$\xrightarrow{F h}$	$F G B$	$\xrightarrow{\varepsilon_{B}}$	B

along the rightish one; but $\varepsilon_{B} \circ F h=\bar{h}$, so the condition becomes $\bar{h} \circ \varepsilon_{F G A}=\bar{h} \circ$ $F G \varepsilon_{A}$.
But now, under adjunction, $h: G A \rightarrow G B$ becomes $\bar{h}: F G A \rightarrow B$, and $G f: G A \rightarrow G B$ becomes $f \circ \varepsilon_{A}: F G A \rightarrow B$. Hence, the left hand side statement becomes: given any $\bar{h}: F G A$ $\rightarrow B$ such that $\bar{h} \circ \varepsilon_{F G A}=\bar{h} \circ F G \varepsilon_{A}$, there exists unique $f: A \rightarrow B$ such that $\bar{h}=f \circ \varepsilon_{A}$, which is precisely the right hand side statement.
PROPOSITION 8.5.5
K is full and faithful if G reflects coequalisers for all G-split coequaliser pairs.
PROOF
G of $F G F G A \xrightarrow[F G \varepsilon_{A}]{\stackrel{\varepsilon_{F G A}}{\longrightarrow}} F G A$ is a split coequaliser by 8.4.7. So if G reflects such coequalisers, then this fork is a coequaliser. And hence K is full and faithful by the previous result.

PROPOSITION 8.5.6
If \mathcal{D} has and G preserves coequalisers for all G-split coequaliser pairs, then K is essentially surjective.

PROOF
Given any algebra $T A \xrightarrow{\theta} A$, we seek $Y \in \mathcal{D}$ such that $K Y \cong T A \xrightarrow{\theta} A$ in \mathcal{C}^{T}. Recall that

(1)
is a coequaliser in \mathcal{C}^{T}, and that the left hand square is a U^{T}-split coequaliser pair (since the bottom is a split coequaliser pair by 8.4.5).
Also by 8.4.5,FGFA $\underset{F \theta}{\stackrel{\varepsilon_{F A}}{\leftrightarrows}} F A$ is a G-split coequaliser pair, and K of it is the pair in (1) (since $\left.K \circ U^{T}=G\right)$.

So it has a coequaliser in \mathcal{D},

$$
\begin{equation*}
F G F A \xrightarrow[F \theta]{\stackrel{\varepsilon_{F A}}{\longrightarrow}} F A \xrightarrow{h} Y \tag{2}
\end{equation*}
$$

say. We show that K of this coequaliser is a coequaliser of the same parallel pair we started with. Recall the following diagram commutes:

G preserves coequalisers of G-split coequaliser pairs; so G of (2) is a coequaliser in \mathcal{C}. K of the pair is a U^{T}-split-coequaliser pair; U^{T} creates coequalisers for such. So K of (2) is a coequaliser. Hence it must be isomorphic to (1); i.e. $K Y \cong(T A \underset{\theta}{\rightarrow} A)$.

We are now in a position to prove Beck's Monadicity Theorem.

```
PROOF (OF 8.5.1)
```

$\mathbf{1} \Rightarrow \mathbf{2}$: Since U^{T} creates coequalisers for U^{T}-absolute coequaliser pairs, and K is an equivalence of categories, so the same holds for G.
$2 \Rightarrow 3$: Immediate from definitions; a split coequaliser is an absolute coequaliser, and "creates" implies "reflects"; so G preserves and reflects split coequalisers.
Since G creates split coequalisers, \mathcal{D} has them. And this was of getting coequalisers in \mathcal{D} does give all the coequalisers we want, so by construction all these are taken to coequalisers in \mathfrak{C}.
$3 \Rightarrow 1$: by Prop 8.5.5 and 8.5.6.

9 - Bicategories

9.1 • Definitions

DEFINITION 9.1.1
A category \mathcal{C} is given by:

- DATA:
- a collection ob \mathcal{C} of objects;
- for each pair of objects, a collection of morphisms $\mathcal{C}(A, B)$;
- for each $A, B, C \in \mathrm{ob} \mathcal{C}$, a function

$$
\begin{aligned}
c_{A B C}: \mathcal{C}(B, C) \times \mathcal{C}(A, B) & \rightarrow \mathcal{C}(A, C) \\
(g, f) & \mapsto g \circ f ;
\end{aligned}
$$

- for each $A \in \mathcal{C}$, a function

$$
\begin{aligned}
i_{A}: \mathcal{C}(A, A) & \\
* & \mapsto \mathrm{id}_{A} .
\end{aligned}
$$

- AXIOMS:
- associativity - $(h g) f=h(g f)$;
- unit $-f \circ 1=f=1 \circ f$.

DEFINITION 9.1.2
A bicategory \mathcal{B} is given by

- DATA:
- a collection ob \mathcal{B} of o-cells;
- for each pair A, B of o-cells, a category $\mathcal{B}(A, B)$, with
* objects being 1 -cells $A \rightarrow B$;
* morphisms being 2-cells $A \underset{\underbrace{\|}_{g}}{\stackrel{f}{\|}} B$;

- composition: for each $A, B, C \in \mathcal{B}$, a functor

$$
\begin{aligned}
& c_{A B C}: \mathcal{B}(B, C) \times \mathcal{B}(A, B) \quad \rightarrow \quad \mathcal{B}(A, C) \\
& (g, f) \quad \mapsto \quad g f
\end{aligned}
$$

- identities: for each $A \in \mathcal{B}$, a functor

$$
\begin{aligned}
I_{A}: & 1 \longrightarrow \mathcal{B}(A, A) \\
& * \mapsto A \underset{I_{A}}{\longrightarrow} A
\end{aligned}
$$

- associativity: for all composable $f, g, h \in \mathcal{B}$, invertible 2-cells

$$
\mathfrak{a}_{f g h}:(h g) f \sim h(g f)
$$

natural in f, g and h.

- unit: for all $f \in \mathcal{B}(A, B)$:

$$
\begin{aligned}
& \mathfrak{r}_{f}: f \circ I_{A} \xrightarrow{\sim} f \\
& \mathfrak{l}_{f}: I_{B} \circ f \xrightarrow{\sim} f
\end{aligned}
$$

natural in f.

- AXIOMS:
- the associativity pentagon commutes:

- the unit triangle commutes:

EXAMPLES 9.1.3
1 If $\mathfrak{a}, \mathfrak{r}$ and \mathfrak{l} are identities, we have a strict 2-category; for example Cat.
2 A bicategory with one object is called a monoidal category.
3 Set has the structure of a monoidal category.

1-object bicategory	\leftrightarrow	monoidal category
1-cells	\leftrightarrow	objects
2-cells	\leftrightarrow	morphisms
composition of 1-cells	\leftrightarrow	"tensor product" of objects $A \otimes B$

In Set we take $A \otimes B=A \times B$ the usual Cartesian product. Then $\mathfrak{a}: A \times(B \times C) \xrightarrow{\sim}$ $A \times(B \times C)$; and we take I to be an object such that $A \times I \cong A \cong I \times A$; i.e. any one-object set.
4 There is a bicategory of rings, bimodules and bimodule homomorphisms.
5 Any category can be regarded as a bicategory with trivial 2-cells.

9.2 • Slightly higher-dimensional categories

DEFINITION 9.2.1
A monoidal category is a category \mathcal{C} equipped with

- a functor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$;
- an object $I \in$ ob C
together with natural isomorphisms

$$
\begin{aligned}
\mathfrak{a}_{A B C}:(A \otimes B) \otimes C & \sim A \otimes(B \otimes C) \\
\mathfrak{l}_{A}: I \otimes A & \sim A \\
\mathfrak{r}_{A}: A \otimes I & \sim A
\end{aligned}
$$

such that the following diagrams commute:

EXAMPLE 9.2.2
Given any category \mathcal{C} we can form a monoidal category from it:

- objects are finite lists $\left(x_{1}, \ldots, x_{n}\right)$ of objects of \mathcal{C};
- morphisms $\left(x_{1}, \ldots, x_{m}\right) \xrightarrow{\left(f_{1}, \ldots, f_{m}\right)}\left(y_{1}, \ldots, y_{m}\right)$ with $f_{i}: x_{i} \rightarrow y_{i}$.
I is the empty list, and \otimes is concatenation of lists. This is known as the "free strict monoidal category on $\mathcal{C}^{\prime \prime}$.

We can draw morphisms as

We have seen other examples of monoidal categories; for instance, Set with $A \otimes B=A \times B$. However, in this case we could have equally well chosen to use $B \times A$, since we have $A \times B \cong$ $B \times A$ - a symmetry

DEFINITION 9.2.3

A symmetry for a monoidal category $(\mathcal{C}, \otimes, I, \mathfrak{a}, \mathfrak{r}, \mathfrak{l})$ is given by isomorphisms

$$
\gamma_{A B}: A \otimes B \xrightarrow{\sim} B \otimes A
$$

natural in A and B such that the following diagrams commute:

We call such a category a symmetric monoidal category.

EXAMPLE 9.2.4

Let \mathcal{C} be the category with objects the natural numbers and morphisms given by

$$
\mathcal{C}(n, m)= \begin{cases}S_{n} & n=m \\ \varnothing & n \neq m\end{cases}
$$

So we can draw morphisms as

and we can compose them. Now, we can make \mathcal{C} into a symmetric monodial category by defining \otimes on objects to be addition (a strictly associative map!), I to be 0 , and $\gamma_{n m}$ given by

We define \otimes on morphisms to be juxtaposition of permutations; for example

\otimes
2

$=$

And our axioms say

which is 'pictorially obvious'. In fact, any two morphisms that are 'pictorially the same' are the same.

EXAMPLE 9.2.5

Just as for monoidal categories, we can form the "free strictly associative symmetrical monoidal category" on a category \mathcal{C}. The objects are finite lists, and the morphisms are as in the previous example, but labelled by morphisms of \mathcal{C}; for example

Note that we do not distinguish over- and under-crossings. But we could; so we would have diagrams that looked like

That is, instead of our symmetry being

it is

Note that one of the axioms for a symmetry does not now hold; we still have

but

$\xrightarrow[\mid]{A} \xrightarrow{B}$

DEFINITION 9.2.6
A braided monoidal category is a monoidal category equipped with a braiding; that is, isomorphisms

$$
\mathfrak{c}_{A B}: A \otimes B \rightarrow B \otimes A
$$

natural in A and B, and denoted by
 , such that

and

$=$

Note that we have another braiding

$$
\mathfrak{c}_{A B}^{\prime}=\mathfrak{c}_{B A}^{-1} \quad \text { i.e. }
$$

but in general $\mathfrak{c} \neq \mathfrak{c}^{\prime}$; if the two are equal, then we in fact have a symmetry.
Note that in the symmetric case we did not have to specify both of the above axioms, as one was the inverse of the other.

REMARK

As before, we can form a "free braided monoidal category" on \mathcal{C} by labelling strands. Then to check that diagrams commute we check each strand and check that the underlying braids are the same.

