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 · Categories, functors and natural transformations

. · Categories

 ..

A category C consists of:

• a collection of objects, obC;
• For every pair X, Y ∈ obC, a collection C(X, Y) = HomC(X, Y) of morphisms f : X Y,

equipped with:

• for each X ∈ obC, an identity map idX = 1X ∈ C(X, X);
• for each X, Y, Z ∈ obC, a composition map

mXYZ : C(Y, Z) × C(X, Y) → C(X, Z)

(g, f) 7→ g ◦ f = gf,

satisfying:

– unit laws — if f : X → Y then 1Y ◦ f = f = f ◦ 1X

– associativity — if X
f
Y

g
Z h W, then h(gf) = (hg)f.

A category is said to be small if obC and all of the C(X, Y) are sets, and locally small if each
C(X, Y) is a set.



 If f ∈ C(X, Y), we say that X and Y are the domain (or source) and the codomain (or target)
of f.

 Morphisms are also referred to as maps or arrows.
 We can write HomC for the collection of all morphisms.
 It is convenient and customary to assume that the C(X, Y) are disjoint for distinct pairs

(X, Y).
 We don’t worry ourselves with the niceties of set theory.

 ..

A category C is called discrete if the only morphisms are identities; i.e.

C(X, Y) =

{
{1X} if X = Y

∅ otherwise.

 ..

 Large categories of mathematical structures:

a Set of sets and functions.
b Categories derived from or related to Set:





• Pfn of sets and partial functions;
• Rel of sets and relations;
• Set∗ of pointed sets and base point preserving functions.

c Algebraic structures and structure-preserving maps:

• Grp of groups and group homomorphisms;
• Ab of abelian groups and group homomorphisms;
• Ring of rings and ring homomorphisms;
• Vec of vector spaces over R;
• Mat of natural numbers and n × m matrices.

d Topological categories:

• Top of topological spaces and continuous maps;
• Haus of Hausdorff spaces and continuous maps;
• Met of metric spaces and uniformly continuous maps;
• Htpy of topological spaces and homotopy classes of maps.

 Mathematical structures as categories:

a Posets: a poset (P,6) can be regarded as a category C with objects the elements of P and
precisely one morphism x → y when x 6 y and none otherwise.

b Monoids: a category with just one object is a monoid.
c Groups: a group G can be regarded as a category with just one (formal) object and

whose morphisms are the elements of G.

 Small categories can be presented by generators and relations. From a directed graph we
can generate a category of “paths through the graph” and then add relations imposing
equalities between some paths with the same domain and codomain.

a There is a category  with no objects and no morphisms, generated by the empty graph.
b There is a category  with one objects and one (identity) morphism, generated by the

graph with just one vertex.
c There is a category generated by the graph with one vertex and one edge. It is isomor-

phic to the additive monoid N.

d There is a category generated by the graph with one vertex and one edge s say, together
with the relation s2 = 1. It has one object and two morphisms and is isomorphic to the
cyclic group of order .

e There is a category generated by the graph with two vertices and one edge between
them. It has two objects and three morphisms and is isomorphic to the poset  = {0 6

1}.

. · Universal properties

 ..

A morphism f ∈ C(X, Y) is an isomorphism if ∃g ∈ C(Y, X) such that gf = 1X and fg = 1Y.
We say g is an inverse for f.

 ..

If g1 and g2 are inverses for f, then g1 = g2.



g1 = g1 ◦ 1Y = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = 1X ◦ g2 = g2. �





 ..

 The identity map is an isomorphism.

 The composition of two isomorphisms is an isomorphism.



 1X is clearly self-inverse.
 Let f ∈ C(Y, Z), g ∈ C(X, Y) be isomorphisms, with respective inverses h ∈ C(Z, Y), k ∈

C(Y, X). Then we claim that fg ∈ C(X, Z) is an isomorphism, with inverse kh ∈ C(Z, X).
For

(fg)(kh) = f(gk)h = f(1Y)h = fh = 1Z

(kh)(fg) = k(hf)g = k(1Y)g = kg = 1X

so we have the desired result. �

 ..

A terminal object in C is an element T ∈ obC such that ∀X ∈ C, ∃! morphism X
k

−→T.



In Set, every -element set is terminal. So sometimes we denote a terminal object by 1.

 ..

Suppose 1 and 1′ are terminal in C. Then there exists a unique isomorphism f ∈ C(1, 1′).



Since 1′ is terminal, there is a unique morphism f : 1 → 1′. Similarly, 1 is terminal, so
there is a unique morphism f′ : 1′ → 1. Now consider f′ ◦ f ∈ C(1, 1). Since 1 is terminal,
there is a unique morphism 1 → 1, i.e. the identity. So f′ ◦ f = id1; similarly f ◦ f′ = id1′ .

Hence f is the desired unique isomorphism. �

 ..

Given A, B ∈ obC, a product of A and B is an object A × B equipped with projections

A × B
p q

A B,

such that for all f : C → A, g : C → B, ∃!morphism (f, g) : C → A×B such that p◦(f, g) =
f and q ◦ (f, g) = g; i.e. such that

C
f g(f,g)

A × B

p q
A B

commutes.



In Set, A × B = { (a, b) | a ∈ A, b ∈ B } with p, q the first and second projections.





Note however, that we could also have taken p, q to be the second and first projections, or
the set to be { (b, a) | b ∈ B, a ∈ A }.

 ..

If
D

p q

A B
and

D′
p′ q′

A B

are products of A, B ∈ C, then ∃! isomorphism k : D → D′ such that q′k = q and p′k = p.



Consider the diagrams

D

p q
k

D′

p′ q′
k′

D′

p′ q′

D

p q

A B A B.

By our definition of product, k is the unique morphism D → D′ s.t. these diagrams com-

mute; so q′k = q and p′k = p certainly.

We claim that k′ is an inverse for k. For consider k ◦ k′ : D′ → D′. We have

p′ ◦ (k ◦ k′) = (p′ ◦ k) ◦ k′ = p ◦ k′ = p′

q′ ◦ (k ◦ k′) = (q′ ◦ k) ◦ k′ = q ◦ k′ = q′

Hence

D′

p′ q′k◦k′

D′

p′ q′

A B

commutes. But by the definition of product, there is a unique morphism D′ → D′ that
makes this diagram commute, i.e. the identity. So k ◦ k′ = idD′ . Similarly k′ ◦ k = idD. So
k is indeed an isomorphism, and is the unique one s.t. q′k = q and p′k = p. �

 ..

If ∀A, B ∈ C, there exists a product A × B, we say C has all binary products.

 ..

If C is a category with binary products, then given f ∈ C(A, C), g ∈ C(B,D), there exists a
unique morphism f × g ∈ C(A × B, C × D) such that





A × B
p0 q0

f×gA

f

B

gC × D

p1 q1
C D

commutes.



Immediate from definition of product. �
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 ..

Suppose C is a category with binary products. Given B, C ∈ obC, a function space or
exponential is an object CB equipped with an evaluation morphism ε : CB × B → C such
that ∀f : A × B → C, ∃! f : A → CB such that

A × B
f

f×1B

C

CB × B

ε

commutes, i.e. ε ◦ (f × 1B) = f.

In Set, CB = { f : B → C } = [B, C]. There is an evaluation map

ε : CB × B → C

(g, b) 7→ g(b).

Given f : A × B → C, fix a ∈ A to get

fa : B → C

b 7→ f(a, b).

So we have a function

f : A → CB

a 7→ fa,

such that

f(a, b) = fa(b)

= ε(fa, b)

= ε ◦ (f × 1B)(a, b).

So ε ◦ (f × 1B) = f as required.





. · Categorical constructions

 ..

A subcategory D of C consists of subcollections

• obD ⊆ obC;
• HomD ⊆ HomC,

together with composition and identities inherited from C. We say D is a full subcategory
of C if ∀X, Y ∈ D, D(X, Y) = C(X, Y), and a lluf subcategory of C if obC = obD.

We can think of the data for a category as

HomC

c1

c2

obC

We could have c1 giving us the domain of a morphism and c2 the codomain, or vice verse.
This motivates the definition:

 ..

Given a category C, the dual or opposite category Cop is defined by:–

• obC = obCop;
• C(X, Y) = Cop(Y, X);
• identities inherited;
• fop ◦ gop = (g ◦ f)op.

   

Given any property, feature or theorem in terms of diagrams of morphisms, we can immedi-
ately obtain its dual by reversing all the arrows (this is often indicated by the prefix “co-”).

 ..

 The dual notion of a terminal category object is an initial object. That is, an object I ∈ C

such that for all Y ∈ C, there exists a unique f : I Y. For example, the (unique) initial
object in Set is ∅; we sometimes write 0 for an initial object.

 The dual of a product is a coproduct:

A q B
p q

A B

where p, q are coprojections such that, for any f ∈ C(A, C), g ∈ C(B, C), ∃! h : A q B → C
such that

C
f gh

A q B

p q
A B

commutes.

 ..

A morphism A
m

−→ B is monic iff given any f, g : C → A, we have mf = mg ⇒ f = g.

Dually, a morphism A
e

−→ B is epic iff given any f, g : B → C, we have fe = ge ⇒ f = g.





It is easy to see that any isomorphism is epic and monic. In Set, a morphism is monic iff it is
injective, and epic iff it is surjective.

 ..

Given C a category and X ∈ obC, then the slice over X, C/X is the category with:

• objects (Y, f), where f : Y → X ∈ C;
• morphisms h : (Y1, f1) → (Y2, f2) such that

Y1
h

f1

Y2

f2

X

commutes, i.e. f2h = f1.

Dually, we have the slice under X, X/C, with:

• objects (Y, f), where f : X → Y ∈ C;
• morphisms h : (Y1, f1) → (Y2, f2) such that

X

Y1
h

f1

Y2

f2

commutes, i.e. hf1 = f2.

We have a terminal object (X, 1X) in C/X and dually an initial object (X, 1X) in X/C.

. · Functors

 ..

Let C and D be categories. A functor F : C → D associates

• with each X ∈ obC, an object FX ∈ obD;
• with each f ∈ C(X, Y), a morphism Ff ∈ D(FX, FY),

such that

• F1X = 1FX;
• F(gf) = Fg ◦ Ff.
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 ..

We define the category Cat of small categories:-

• For any category C there is an identity functor

1C : C → C

X 7→ X

f 7→ f





• Composition of functors C
F

−→ D
G

−→ E with GF defined in the obvious way.

Similarly we have CAT, the category of large categories and functors.

 ..

 Cat has an initial object 0.
 Cat has a terminal object 1.
 Cat has products; given C,D ∈ obCat, we have the product C × D with

• objects (c, d), c ∈ C, d ∈ D;
• morphisms (f, g), f : c → c′ ∈ C, g : d → d′ ∈ D.

 ..

A functor F : C → D is faithful/full/full and faithful if C(X, Y) → D(FX, FY) is injective/
surjective/an isomorphism.

 ..

 Functors between collections of mathematical objects:

a forgetful functors:

Gp → Set

Ring → Set

Ring → Ab

Haus → Top;

b free functors:

Set → Gp

Set → Mnd;

c inclusion of subcategories:

Ab → Gp

Haus → Top.

 Functors between mathematical structures:

a posets f : (P,6) → (Q,4) is an order-preserving map;
b groups f : G → H is a group homomorphism.

 Presheaves – a functor Cop → Set is called a presheaf on C.

 Diagrams – a functor C → Set is called a diagram on C.

Note that a functor will preserve any property that is expressible as a commutative diagram.

For example, isomorphisms are preserved by all functors; if f is an isomorphism, then Ff is
also.



If F is full and faithful, then Ff isomorphic ⇔ f isomorphic.



Let f ∈ C(X, Y) such that Ff is an isomorphism. Then ∃ inverse g′ ∈ D(FY, FX) for Ff.
Since F is full, then ∃g ∈ C(Y, X) such that g′ = Fg. But now

F(fg) = (Ff)(Fg) = 1FY.





And F(1Y) = 1FY, so since F is faithful, we have fg = 1Y. Similarly gf = 1X. So g is an
inverse for f ∈ C(X, Y), i.e. f is an isomorphism. �

. · Contravariant functors

 ..

A contravariant functor C → D is a functor Cop → D. That is:

• on objects, X 7→ FX;

• on morphisms, X
f

−→ Y 7→ FY
Ff

−→ FX;
• identities are preserved;
• F(g ◦ f) = Ff ◦ Fg.

A non-contravariant functor is sometimes referred to as a covariant functor.

. · The Hom functor

.. · 

Let C be a locally small category. We have a contravariant functor HU or C( , U):

HU : C
op → Set

X 7→ C(X,U)

X
f

Y
7→

C(X,U)
C(1,g)

g

C(Y,U) gf

Dually, we have a covariant functor HU or C(U, ):

HU : C → Set

X 7→ C(U,X)

X
f

Y
7→

C(U,X)
C(f,1)

g

C(U, Y) fg

These are known as representables.

.. ·  Hom 

Again, take C locally small. Then we have a functor

H : C
op × C → Set

(X, Y) 7→ C(X, Y)

(X, Y)
(f,g)

(X′, Y′)
7→

C(X, Y)
C(f,g)

h

C(X′, Y′) ghf

where f : X → X′ ∈ Cop and g : Y → Y′ ∈ C.





. · Natural transformations

 ..

Let F, G : C → D be functors. A natural transformation α : F → G is a collection of
morphisms (known as components)

{ αX : FX → GX | X ∈ C },

such that, ∀f : X → Y ∈ C,

FX
αX

Ff

GX

Gf

FY αY
GY

commutes (the naturality condition).
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 ..

Given categories C and D, we define the (larger) category [C,D] where:

• objects are functors F : C → D;
• morphisms are natural transformations α : F → G,

such that:

• identities are natural transformations 1F : F → F (for any F : C → D with components

FX
1FX

−→ FX;
• for composition, given F

α
−→G

β
−→H, then β ◦ α is the natural transformation with compo-

nents

(β ◦ α)X : FX
βX◦αX

−−−→ HX.

C

F

G

H

D

α

β

So, for example, [C,D](F, G) is a collection of natural transformations F → G.

 ..

A natural isomorphism α : F → G is an isomorphism in the functor category; i.e. there
exists β : G → F such that α◦β = 1G and β◦α = 1F. Note that two natural transformations
are equal iff all their components are.

 ..

α : F → G is a natural isomorphism iff each component αX : FX → GX is an isomorphism
in D.



Suppose α is a natural isomorphism, and let β be its inverse. Then

α ◦ β = 1G ⇒ (α ◦ β)X = 1GX ⇒ αX ◦ βX = 1GX





and
β ◦ α = 1F ⇒ (β ◦ α)X = 1FX ⇒ βX ◦ αX = 1FX.

So βX is an inverse for αX for each X ∈ C. Thus each component is an isomorphism in D.

Conversely, if each component αX is an isomorphism, then let βX be the corresponding
inverses for each X ∈ C. Now, given f ∈ C(X, Y), we have that

FX
αX

Ff

GX

Gf

FY αY
GY

commutes; i.e. (Gf) ◦ αX = αY ◦ (Ff). But now:–

βY ◦ (Gf) ◦ αX ◦ βX = βY ◦ αY ◦ (Ff) ◦ βX
so βY ◦ (Gf) ◦ 1GX = 1FY ◦ (Ff) ◦ βX

so βY ◦ (Gf) = (Ff) ◦ βX;

hence

GX
βX

Gf

FX

Ff

GY
βY

FY

commutes; so we can legitimately define the natural transformation β with components
βX. And clearly β is an inverse for α, so α is a natural isomorphism. �

We can prove similar results that tell us that α is epic/monic iff all its components are.

. · The -category Cat

 ..

We define “horizontal composition” of natural transformations. We have seen “vertical
composition” already:

C

F

G

H

D

α

β

= C

F

H

D.β◦α

But we can also compose:

C

F

G

D

H

K

Eα β = C

HF

KG

E.β∗α

We define (β ∗ α)X : HFX → KGX by

HFX
HαX

−−→ HGX
βGX

−→ KGX





or

HFX
βFX

−→ KFX
KαX

−→ KGX.

By the naturality of β, these definitions are equivalent:

HFX
βFX

HαX

KFX

KαX

HGX
βGX

KGX

so we can define
(β ∗ α)X = βGX ◦ HαX = KαX ◦ βFX.

We consider the following particular case:

C

F

G

D

H

H

Eα 1H 1H ∗ α : HF → HG

which we will (for convenience) write as:

C

F

G

D
H

Eα Hα : HF → HG.

Similarly we have:

C
F

D

H

K

Eβ βF : HF → KF.

 .. ( -  )

Given

C

F

G

H

D

J

K

L

E,
α(1)

α(2)

β(1)

β(2)

we have (β(2) ◦ β(1)) ∗ (α(2) ◦ α(1)) = (β(2) ∗ α(2)) ◦ (β(1) ∗ α(1)).







Consider components. We have

[(β(2) ◦ β(1)) ∗ (α(2) ◦ α(1))]X = (β(2) ◦ β(1))HX ◦ J(α(2) ◦ α(1))X

= β(2)HX ◦ β(1)HX ◦ Jα(2)X ◦ Jα(1)X

and

[(β(2) ∗ α(2)) ◦ (β(1) ∗ α(1))]X = β(2)HX ◦ Kα(2)X ◦ β(1)GX ◦ Jα(1)X .

So it is sufficient to prove that Kα(2)X ◦ β(1)GX = β(1)HX ◦ Jα(2)X . But we have that

JGX
β
(1)

GX

Jα
(2)

X

KGX

Kα
(2)

X

JHX
β
(1)

HX

KHX

commutes (by the naturality of β(1)), and so we are done. �

 ..

We can now define the -category Cat, consisting of:

• objects, morphisms and two-cells;
• composition of morphisms;
• horizontal and vertical composition of -cells;
• axioms - unit, associativity and middle- interchange; “any two ways of composing are the

same”.

 ..

Given categories C and D, an equivalence consists of:

• functors C
F

−→ D, D
G

−→ C;
• natural isomorphisms GF α

1C, FG
β
1D.

We call β the inverse up to isomorphism or the pseudo-inverse of α.

 ..

A functor F : C → D is essentially surjective on objects iff ∀ Y ∈ D, ∃ X ∈ C such that
FX ∼= Y ∈ D.

 ..

F is an equivalence of categories iff it is essentially surjective and full and faithful.



Omitted. �





 · Representability

. · The Yoneda Embedding

Recall that for each A ∈ C, we have the functor HA : Cop → Set. So we have an assignation
A 7→ HA. We can extend this to a functor, known as the Yoneda embedding:–

H• : C → [Cop, Set]

A 7→ HA

(f : A → B) 7→ (Hf : HA → HB),

where Hf is the natural transformation with components

(Hf)X : HAX → HBX

i.e. C(X, A) → C(X, B)

h 7→ f ◦ h.

We need to check that this is a well-defined natural transformation, i.e. that

C(Y, A)
(Hf)Y=f◦

HAg= ◦g

C(Y, B)

HBg= ◦g

C(X, A)
(Hf)X=f◦

C(X, B)

commutes. But along the two legs we just have:–

h f ◦ h

(f ◦ h) ◦ g

and

h

h ◦ g f ◦ (h ◦ g)

so the naturality condition just says that composition is associative.
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. · Representable Functors

 ..

A functor F : Cop → Set is representable if it is naturally isomorphic to HA for some A ∈ C,

and a representation for F is an objectA ∈ C together with a natural isomorphism α : HA →
F.

Dually, a functor F : C → Set is representable if F ∼= HA for some A ∈ C, and a represen-
tation for F is an object A with a natural isomorphism α : HA → F.







The naturality square says, that ∀f : V → W ∈ C,

C(W,A)
αW

HAf= ◦f

FW

Ff

C(V,A) αV
FV

commutes.

 ..

 The forgetful functor U : Gp → Set is representable. Take A = Z, and α to be the natural
transformation with components:

αG : H
ZG → UG

f 7→ f(1).

Then we can check that α is natural, and it is an isomorphism, since any homomorphism
f : Z → G is completely determined by f(1).

 ob : Cat → Set is representable. For let A be 1, the terminal category; then ob(C) ∼=
Cat(1,C) is a natural isomorphism.

Now, we can make a few suggestive observations about natural transformations α : HA → F.
Consider the naturality square

C(A,A)
αA

◦f

FA

Ff

C(V,A) αV
FV

We know this commutes; in particular, for the element 1A ∈ C(A,A), we have

αV(1A ◦ f) = Ff(αA(1A)),

so that α is in fact completely determined by αA(1A) ∈ FA. So, we would like to define a
natural transformation α : HA → F by setting α(1A) = x ∈ FA, and αV(f) = (Ff)(x). If this
is indeed a natural transformation, then we will have set up a bijection between FA and the
natural transformations HA → F. Hence we get . . .

. · The Yoneda Lemma

 .. ( )

Let C be a locally small category, F : Cop → Set. Then there is an isomorphism

FA ∼= [Cop, Set](HA, F),





which is natural in A and F; i.e.

FB

Ff

[Cop, Set](HB, F)

◦Hf

FA [Cop, Set](HA, F)

and

FA

θA

[Cop, Set](HA, F)

θ◦

GA [Cop, Set](HA, G)

commute, for all f : A → B and for all θ : F → G respectively.



 Given x ∈ FA, we define x̂ ∈ [Cop, Set](HA, F) by components:

X̂V : C(V,A) → FV

f 7→ Ff(x)

We must check the naturality of x̂; given g : W → V, we need

C(V,A)
x̂V

◦g

FV

Fg

C(W,A)
x̂W

FW

to commute. On elements, we have

f Ff(x)

Fg
(
Ff(x)

)
and

f

f ◦ g F(f ◦ g)(x)

But Fg(Ff(x)) = F(f ◦ g)(x) by the (contravariant) functoriality of F, so the square com-

mutes as required.

 Given α ∈ [Cop, Set](HA, F), we define α̂ ∈ FA by

α̂ = αA(1A).

 We check ( ̂̂) = ( ). Given x ∈ FA,

̂̂x = x̂A(1A) = F(1A)(x)

= 1FA(x)

= x.

Given α ∈ [Cop, Set](HA, F), ̂̂α is given by components

̂̂α : C(V,A) → FV

f 7→ Ff(α̂) = Ff(αA(1A)).

So we need only check that αV(f) = Ff(αA(1A)). We have the following naturality square





for α:
C(A,A)

αA

◦f

FA

Ff

C(V,A) αV
FV

so on the element 1A ∈ C(A,A), we have αV(1A ◦ f) = Ff(αA(1A)), as required.

 We check naturality in A, i.e. that given any B
f

−→ A,

FA ̂

Ff

[Cop, Set](HA, F)

◦Hf

FB ̂
[Cop, Set](HB, F)

commutes. On elements, we have:

x x̂

x̂ ◦ Hf

and

x

Ff(x) F̂f(x).

Now, the former has components

C(V, B)
(Hf)V

C(V,A)
x̂V

FV
g f ◦ g F(f ◦ g)(x),

and the latter

C(V, B)
F̂f(x)V

FV
g Fg ◦ Ff(x).

But (Fg ◦ Ff)(x) = F(f ◦ g)(x) by the functoriality of F; so the naturality square commutes
as required.

 Finally, we must check the naturality in F; given a natural transformation θ : F → G, we
show that

FA

θA

[Cop, Set](HA, F)

θ◦

GA [Cop, Set](HA, G)





commutes. We have

x x̂

θ ◦ x̂

and

x

θA(x) θ̂A(x)

with respective components

C(V,A)→ GA
f7→ θV ◦ Ff(x)

and
C(V,A)→ GA

f 7→ Gf ◦ θA(x)

But these two are equal by the naturality of θ; so the naturality square commutes as re-
quired. �

Dually, for F : C Set, we have

FA ∼= [C, Set](HA, F).
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 ..

The Yoneda embedding is full & faithful.



We need to show that C(A, B)
H•

−→ [Cop, Set](HA, HB) is an isomorphism. By the Yoneda
lemma, with F = HB, we have

HB(A) ∼= [Cop, Set](HA, HB).

So we just need to check that H• is the same isomorphism as that given by the Yoneda

lemma; i.e. that f̂ = Hf or Ĥf = f. But

Ĥf = (Hf)A(1A) = f. �

Note that this shows that, given f, g : A → B, then Hf = Hg ⇒ f = g. Also, given HA
h

−→ HB,

there exists f : A → B such that Hf = h.

 ..

A ∼= B ∈ C implies C(X, A) ∼= C(X, B) and C(A, X) ∼= C(B, X), each isomorphism being
natural in X.



H• is full and faithful, so A ∼= B ⇔ HA
∼= HB, so C(X, A) ∼= C(X, B) naturally in X.

Similarly for the dual statement. �

. · Parametrised representability

Consider F : Cop × A → Set. For all A ∈ A, we get

F( , A) : C
op → Set

X 7→ F(X, A).

Suppose each F( , A) has a given representation, i.e.

• an object UA;





• a natural isomorphism αA : C( , UA) → F( , A).

So we have an assignation A 7→ UA. Can we extend it to a functor? And are the αA the
components of a natural transformation?

 ..

Given a functor F : Cop ×A → Set such that each F( , A) : Cop → Set has a representation

αA : C( , UA) → F( , A),

then there is a unique way to extend A 7→ UA to a functor U : A → C such that the αA are
components of a natural transformation H• ◦ U → F.



First we construct U on morphisms; i.e. given f : A → B, we seek Uf : UA → UB. In order
to satisfy the naturality condition on α, we need

C( , UA)
αA F( , A)

F( ,f)

C( , UB) αB
F( , B)

to commute.

Since the horizontal morphisms are isomorphisms, we get a unique morphism on the left
HUA

→ HUB
making the diagram commute. Now, the Yoneda embedding is full and faith-

ful, so there exists a unique morphism UA → UB inducing it. Call this Uf. It only remains
to check that U is functorial; it will make α a natural transformation by construction.

 CheckU(1A) = 1UA. Note thatU(1A) is the unique morphism making the naturality square
commute, so it suffices to check that 1UA makes the square commute.
We have

C( , UA)
αA

1UA◦

F( , A)

F( ,1A)

C( , UA) αA
F( , A)

which commutes as required.

 We check U(g ◦ f) = Ug ◦ Uf given A
f

−→ B
g

−→ C. Consider

C( , UA)
αA

HUf

F( , A)

F( ,f)

C( , UB)
αB

HUg

F( , B)

F( ,g)

C( , UC) αC
F( , C)





Each square commutes, so the outside commutes. Now, the composite on the RHS is
F( , g ◦ f), and by definition it induces a unique map HU(g◦f) on the left such that the
diagram commutes. So we must have

HU(g◦f) = HUg ◦ HUf

= HUg◦Uf,

by functorality. But the Yoneda embedding is full and faithful, so we have U(g ◦ f) =
Ug ◦ Uf as required. �

 ..

A Cartesian closed category is a category C equipped with:

• a terminal object T;
• binary objects;
• function spaces.

In fact, in the light of the above results on representability, we can also characterise a Cartesian
closed category as containing:

• a representation for the functor F : X 7→ 1, since 1 ∼= C(X, T) for T a terminal object;
• representations for the functors FA,B : X → C(X, A) × C(X, B), since C(X, A) × C(X, B) ∼=

C(X, A × B) naturally in X;
• representations for the functors FB,C : X → C(X×B, C), since C(X×B, C) ∼= C(X, CB) naturally

in X.

We can do even better; using the parametrised representability result, we can:

• from the functor F : (X, (A, B)) 7→ C(X, A)×C(X, B), construct the functorU : (A, B) 7→ A×B;
• from the functor F : (X, (B, C)) 7→ C(X × B, C) construct the functor U : (B, C) 7→ CB.
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 · Limits & colimits

. · Introduction

Consider any drawable diagram contained within some category D; for example

• • • •

Then a limit over this diagram is a universal cone:

.. · 

A cone over a diagram consists of:

• a vertex - an object in D;
• projections - a morphism from the vertex to each object of the diagram,

such that all the resulting triangles commute:

•

• • • •





.. ·    

Informally, something is universal with respect to a property if any other thing with that prop-
erty factors through it uniquely. A limit is a universal cone over a diagram; that is, a cone such
that any other cone factors through it uniquely. For example:

L

• • • •

s.t. given Y with
Y

ϕ
L

• • • •

there exists unique ϕ such that all the triangles commute. As before, the limit is unique up to
unique isomorphism.

.. ·   d

Let I be a small category (I is a generalisation of our “drawable diagram”), and let D be a
functor I → D. Then we have the cone over D:

• a vertex L ∈ D;
• for each object I ∈ I, a morphism kI : L → DI

such that, for all u : I → I′ ∈ I,

L
kI kI′

DI
Du

DI′

commutes. We write (L
kX

−→ DI)I∈I.

A limit is a universal cone, and the universal property says: given a cone (Y
pX

−→ DI)I∈I, there
exists a unique morphism f : Y → L such that “all triangles commute”, i.e., for all I ∈ I,

Y
f

pI

L

kI

DI

commutes.

. · Some specific limits

.. · 

A product is a limit of shape I with I discrete. So, for example, we have

L

DI DI′ DI′′ DI′′′

our cone, where DI, · · · ∈ obD. The universal property says, given any other cone from L′,
say, then

L′ L

DI DI′ DI′′ DI′′′





has a unique morphism L′ → L such that every triangle commutes. We write

∏

I∈I

DI
pI

−→ DI.

We have already seen the product over the empty set, i.e. a terminal object, and the product
over {•, •}; that is, a binary product.

.. · 

An equaliser is a limit of shape • • . A diagram of this shape in D is of the form

A
f

g
B.

A cone over this diagram is

E

e m

A
f

g
B.

Note that m = fe = ge as all triangles commute; so in fact we can rewrite this more simply as

E
e

A
f

g
B such that fe = ge.

An equaliser is the universal such; so given any C
h

A
f

g
B such that fh = gh,

then there exists a unique factorisation:

E
e

A
f

g
B

C

∃!h
h

such that h = eh.

.. · 

A pullback is a limit of shape

•

• •

A diagram of this shape in D is

W

g

U
f

V.





A cone over this diagram is

P
g′

a

W

f′

U
f

V

commuting (really, there is a projection c : Z → V, but we must have c = fa = gb). A
pullback is the universal such; so given any commutative square

Z
b

a

W

g

U
f

V,

we have

Z
∃!h

b

a P
f′

g′

W

g

U
f

V

a unique h such that g′h = a, and f′h = b. We say that g′ is a pullback for g over f, and that
f′ is a pullback for f over g.
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. · Limits — formally

 ..

Given Y ∈ D, we define the constant functor ∆Y:

∆Y : I → D

I 7→ Y

f 7→ 1Y.

From this we get a functor:

∆ : D → [I,D]

Y 7→ ∆Y

X
f

Y
7→

∆X
∆f

∆Y

with every component of ∆f being f.





 ..

A limit for D : I → D is a representation for the functor

[I,D](∆ , D) : D
op → Set.

That is, an object L ∈ D and a natural isomorphism α with

HL

α
∼= [I,D](∆ , D).

We write L = lim←I D =
∫
IDI.

So we have an isomorphism

D( ,
∫
IDI)

∼= [I,D](∆ , D).

Let us make explicit what the functor on the right hand side does; call it F. Then:

F : D
op → Set

Y 7→ [I,D](∆Y,D)

Y
f

X
7→

[I,D](∆X,D)
Ff

θ

[I,D](∆Y,D) θ ◦ ∆f.

Now, what does a natural transform ∆Y
k

−→ D look like? We have:

• for each I ∈ I, a morphism

kI : (∆Y)I → DI

Y → DI;

• for all u : I → I′ in I,

(∆Y)I

(∆Y)u

DI

Du

(∆Y)I′ DI′

commutes by naturality; i.e.

Y
kI kI′

DI
Du

DI′

commutes.

So such a natural transformation is precisely a cone overDwith Y as the vertex. Now, consider
a representation as above, and let α be its natural isomorphism. Then we have

αY : D(Y, L) → [I,D](∆Y,D)

f 7→ Ff(αL1L);

i.e., the natural transformation is completely determined by αL1L.

Now, we have a cone given by αL1L = (kI)I∈I, say. So given any other Y and Y
f

−→L on the left





hand side, we have Ff(αL1L) with components kI◦f; hence we have a bijective correspondence

morphisms

Y
f

−→ L
↔

cones over D
(kI ◦ f)I∈I

i.e., starting on the right hand side, given any cone (pI)I∈I, there exists a unique morphism
f : Y → L such that pI = kI ◦ f for all I; thus (kI)I∈I is a universal cone over D.

Note that any isomorphism on the left hand side will give rise to a universal cone.

 ..

If a limit exists for all functors from D : I → D, we say D has all limits of shape I.

If D has all limits of shape I for all small/finite categories I, we say D has all small/finite
limits or that D is (finitely) complete.

. · Limits in Set

 ..

Set has all small limits.



We seek a limit for F : I → Set. We define L, a set of tuples ⊆
∏

I∈I

FI by taking all tuples
(xI)I∈I satisfying:

• ∀I ∈ I, xI ∈ FI;
• ∀I

u
−→ I′, Fu(xI) = xI′ .

We have projections

L
pI
FI

(xI)I∈I xI

for each I ∈ I. We now show that this is a minimal cone:

 It is a cone; we need to show, for all u : I → I′, that

FI
Fu

L
pIpI′

FI′

commutes. On elements we have

xI

(xI)I∈I

Fu(xI)

and

(xI)I∈I

xI′

so we are done here, since Fu(xI) = xI′ .

 It is universal: we show that every cone factors through it uniquely. So consider a cone

(Z
qI

−→ FI)I∈I; so

FI
Fu

Z
qIqI′

FI′





commutes; that is, for all y ∈ Z, Fu(qI(y)) = qI′(y). We seek a unique factorisation making
the following diagram commute for all I:

Z

qI

h

FI

L

pI

On elements, this would give

y

qI(y)

h(y)

So, writing h(y) = (aI)I∈I, we must have aI = qI(y). So define h by h(y) = (qI(y))I∈I. It
remains to check that h(y) ∈ L, so that for all u : I → I′, Fu(aI) = aI′ ; i.e.

Fu(qI(y)) = qI′(y),

which follows since (Z
qI

−→ FI)I∈I is a cone. �
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. · Limits in other categories

 ..

If a category D has all small products and equalisers, then D has all small limits.



Given a diagram D : I → D, I small, we seek a limit in D. The idea of the proof is to

construct it as an equaliser E e P
f

g
Q, where P andQ are certain products over theDI.

 Put
P =

∏

I∈I

DI

with projections P
pI
DI; this is a small product, so exists.

 Put
Q =

∏

u : I→J∈I

DJ

with projections Q
qU

DJ; again, a small product, so exists.

 Induce f by the universal property of Q as follows: for all u : I → J, we have pJ : P → DJ
inducing a unique f : P Q such that ∀u,

qU ◦ f = pJ. ()





P

DJ

pJ

P Q
!f

Q

DJ

qU

 Induce g by the universal property of product Q (differently) as follows: for all u : I J,
we have Du ◦ pI : P → DJ inducing a unique g : P Q such that, for all u,

qu ◦ g = Du ◦ pI. ()

DI DJ
Du

P

DI

pI

P Q
!g

Q

DJ

qU

 Take equaliser E e P
f

g
Q; so in particular

fe = ge. ()

Claim that (E
pI◦e

DI)I∈I gives a universal cone over D.

 First we show it is a cone; i.e. for all u : I → J,

Du ◦ pI ◦ e = pJ ◦ e ()

This is true, since

Du ◦ pi ◦ e = qu ◦ g ◦ e by ()

= qu ◦ f ◦ e by ()

= pJ ◦ e by ()

It remains to show that this cone is universal; i.e. given any cone (V
vI DI)I∈I, we seek a

unique x : V E such that for all I ∈ I, pI ◦ e ◦ x = vI.

E

DI

pI◦e

V

E

x

V

DI

vI





We will construct a diagram

V

x

vI

k
m

E
e

P
f

g

pI

Q

DI

So suppose we are given such a cone (V
vI DI)I∈I. So for all u : I → J,

Du ◦ vI = vJ. ()

 Induce k : V → P by the universal property of P: for all I ∈ I, we have V
vI DI inducing a

unique k : V → P such that, for all I,

pI ◦ k = vI. ()

 Induce x : V → E by the universal property of the equaliser; in order to do this, we must
first show that fk = gk. Now, for all u : I → J, we have V vJ

DJ inducing a unique m : V →
Q such that

qu ◦ m = vJ. ()

But fk and gk both satisfy this condition, since, for all u,

qu ◦ fk = pJ ◦ k by ()

= vJ by ()

and

qu ◦ gk = Du ◦ pI ◦ k by ()

= Du ◦ vI by ()

= vJ by ()

Hence fk = gk; so we can induce a unique x : V → E such that

e ◦ x = k. ()

 We now check that x is a factorisation for the cones. So given I ∈ I,

pI ◦ e ◦ x = pI ◦ k by ()

= vI by ()

so we have the desired result.

 Finally, we show that x is unique with this property; suppose we have a morphism y : V →
E such that, for all I,

pI ◦ e ◦ y = vI. ()

Now by construction x is unique such that ex = k, so we seek to show also ey = k. By
construction, k is unique such that for all I, pI ◦ k = vI (by ()); but () says that ey also
satisfies this. Hence ey = k, so y = x and we are done. �





. · Colimits

 ..

A colimit for a diagram D : I → D is a representation

D(
∫ IDI, ) ∼= [I,D](D,∆ ).

So a colimit for D : I → D is essentially a limit of Dop : I
op → Dop. If D has all small colimits,

we say it is cocomplete.
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. · Parametrised limits

Recall two results:

 Given a diagram D : I → D, a limit for D is a representation

D( ,
∫
IDI)

∼= [I,D](∆ , D)

 Given a functor X : Cop × A → Set such that each X( , A) has a representation

αA : C( , UA) ∼= X( , A)

then there is a unique way to extend A 7→ UA to a functor such that

C(Y,UA) ∼= X(Y, A)

naturally in Y and A, with components of the implied natural transformation given by αA.

 ..

Define F : I × A → D such that each F( , A) : I → D has a specified limit in D:

D( ,
∫
I F(I, A))

∼= [I,D](∆ , F( , A)).

Then there is a unique way to extend A 7→
∫
I F(I, A) to a functor A → D such that

D(Y,
∫
I F(I, A))

∼= [I,D](∆Y, F( , A))

naturally in Y and A.



Simple application of parametrised representability. �

 ..

Suppose D has chosen limits of shape I. Consider the evaluation functor

E : I × [I,D] → D

(I, D) 7→ DI

Then E( , D) has a limit for each D,
∫
IDI. By parametrised limits, we get a functor

∫
I : [I,D] → D

D 7→
∫
IDI

such that D(Y,
∫
IDI)

∼= [I,D](∆Y,D) naturally in Y and D.

 ..

We can restate the definition of a limit to get

D(Y,
∫
IDI)

∼=
∫
I D(Y,DI).





What does this mean?

 The right hand side is the limit of the functor

D(Y,D ) : I → Set

I 7→ D(Y,DI)

I
u

I′
7→

D(Y,DI)
Du◦

D(Y,DI′)

Set is complete, so this certainly has a limit. What does
∫
I D(Y,DI) look like? Well, it is all

tuples (αI)I∈I such that
∀I, αI ∈ D(Y,DI)

and
∀u : I → I′, Du ◦ αI = αI′ .

So this is precisely a cone over D; i.e.
∫
I D(Y,DI) = [I,D](∆Y,D)

 Observe that by parametrised limits, we have a functor

Y 7→
∫
I D(Y,DI)

So ∫
I D(Y,DI) = [I,D](∆Y,D) ∼= D(Y,

∫
DI)

naturally in Y and D.

. · Preservation, reflection and creation of limits

Let I
D

D
F

E. We can consider limits over D and limits over FD.

 ..

Suppose we have a limit cone for D

(
∫
IDI

kI DI)I∈I

We say F preserves this limit if

(F
∫
IDI

FkI FDI)I∈I

is a limit cone for FD in E. Note that it must preserve projections.

 ..

Suppose FD : I → E has a limit cone. We say F reflects this limit if any cone that goes to a
limit cone was already a limit cone itself. That is, given a cone

(Z
fI
DI)I∈I

such that (FZ
FfI

FDI)I∈I is a limit cone for FD, then (Z
fI
DI)I∈I is also a limit cone.





 ..

Suppose FD : I → E has a limit cone. We say F creates this limit if there exists a cone (Z
fI
DI)I∈I such that (FZ

FfI
FDI)I∈I is a limit cone for FD, and additionally F reflects limits.

That is, given a limit for FD, there is a unique-up-to-isomorphism lift to a limit for D.
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. · Examples of preservation, reflection and creation

 ..

Representable functors preserve limits.



We consider

I
D

C
HU

Set

I DI C(U,DI)

Given a limit cone for D,

(
∫
IDI

kI DI)I∈I,

we need to show that

C(U,
∫
IDI)

kI◦
C(U,DI)

is a limit cone for C(U,D ). Certainly, C(U,
∫
IDI)

∼=
∫
I C(U,DI). And for projections

C(U,
∫
IDI)

∼= [I,C](∆U,D) =
∫
I C(U,DI)

f 7→ kI ◦ f

so we are done. Dually, we have

C(
∫ IDI, U) ∼=

∫
I C(DI, U)

so HU takes a colimit in C to a limit in Set; and hence takes a limit in Cop to a limit in Set.

Thus HU also preserves limits. �

 ..

A full and faithful functor preserves limits.



Consider I
D

C
F

E, with F full and faithful, and let (Z
fI
DI)I∈I be a cone such that F of

it is a limit cone for FD. We need to show that this cone itself is a limit.

Now, given any other cone (W
gI
DI)I∈I, we seek a unique h such that gI = fI ◦ h for all

I ∈ I. So

 Since F(Z
fI
DI) is a limit, there exists unique m such that FgI = Ffi ◦ m for all I ∈ I.

 Since F is full, there exists h : W → Z such that Fh = m.

 Check commuting condition: we know that, for all I ∈ I, FgI = Ffi◦Fh, i.e. FgI = F(fi◦h).
Hence fI ◦ h = gI since F is faithful.

 Suppose there is a k such that for all I ∈ I, fI ◦ k = gI. Then FfI ◦ Fk = FgI for all I; but
we have that m is the unique morphism such that Ffi ◦ m = FgI; hence Fk = m = Fh, so
k = h (as F faithful), and we are done. �





 · Ends and coends

. · Dinaturality

 ..

Given functors F, G : Cop × C D, a dinatural transform α : F G consists of, for each
U ∈ C, a component

αU : F(U,U) G(U,U)

such that for all f : U → V,

F(U,U)
αU G(U,U)

G(1,f)

F(U,V)

F(f,1)

F(1,f)

G(U,V)

F(V,V) αV
G(V,V)

G(f,1)

commutes.

Note that there is no sensible composition of dinatural transformation, and hence Dinat(F, G)
is just a set.

. · Ends and coends

Recall that a limit for D : I D is a representation for [I,D](∆ , D) = Nat(∆ , D), such that

D(Y,
∫
IDI)

∼= Nat(∆Y,D) naturally in Y.

 ..

An end for F : I
op × I D is a representation for the functor

Dinat(∆ , F) : D
op Set

so that
D(Y,

∫
I F(I, I))

∼= Dinat(∆Y, F) naturally in Y.

Dually, a coend for F is just a representation for Dinat(F,∆ ) : D → Set so

D(
∫ I F(I, I), Y) ∼= Nat(F,∆Y) naturally in Y.



Ends are in fact just a special sort of limit; any end can be expressed as a limit.

. · Ends in Set

Recall a limit in Set for D : I Set is given by

{ (xI)I∈I | ∀I, xi ∈ DI,∀u : I I′, Du(xI) = xI′ }.

An end in Set for X : I
op × I Set is given by

{ (xI)I∈I | ∀I, xi ∈ X(I, I),∀f : I I′, X(1, f)(xI) = X(f, 1)(xI′) }.





. · Key observations

 ..

Parametric results follow, so we can use ends in Set to restate the definition of (co)ends.
Consider

XV : I
op × I Set

(I, J) D(V, F(I, J))

We have an end in Set
∫
I XV(I, I)

∼=
∫
I D(V, F(I, I)) = Dinat(∆V, F)

So we get:

End: D(V,
∫
I F(I, I))

∼=
∫
I D(V, F(I, I))

Coend: D(
∫ I F(I, I), V) ∼=

∫
I D(F(I, I), V)

 ..

The set [C,D](F, G) is an end in Set. For consider

X : C
op × C Set

(U,V) D(FU,GV)

Then
∫
U X(U,U) =

∫
U D(FU,GI) is just

{ (αU)U∈C | αU : FU GU and ∀f : U U′, X(1, f)(αU) = X(f, 1)(αU′) }.

But now
Gf ◦ αU = X(1, f)(αU) = X(f, 1)(αU′) = αU′ ◦ Ff

so this is just a naturality condition on the αU’s; and hence we have
∫
U X(U,U) =

∫
U D(FU,GI) = [C,D](F, G).
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 ..

We can restate the Yoneda lemma. Recall that if X : C
op Set, we have

X(U) ∼= [Cop, Set](HU, X)
∼=

∫
V[HU(V), X(V)] where [ , ] means morphisms in Set

∼=
∫
V[C(V,U), X(V)]

. · Applications

Consider a functor F : I → [C,D]. What does a limit cone for this look like? We have

(L
αI FI)I∈I

with L a functor and αI a natural transformation L → FIwith components (αI)C : LC FI(C).

Now, given C ∈ C, we can evaluate the whole cone at C:

(LC
αIC FI(C))I∈I





Now if this is a limit cone in D for

FC : I D

I FI(C)

then we say that the limit for F is “computed pointwise”.

 ..

Suppose F : I → [C,D] is such that for all C ∈ C,

FC : I D

I FI(C)

has a limit cone (∫
I FI(C)

(pC)I
FI(C)

)
I∈I

.

Then F has a limit (∫
I FI

kI FI
)
I∈I

computed pointwise; i.e.
(∫

I FI
)
(C) =

∫
I FI(C)

and (kI)C = (pC)I



We have a functor

F : I × C D

(I, C) FI(C)

and each F( , C) = FC has a limit, so by parametrized limits, we get a functor

C
∫
I FI(C)

Call it L, and claim this gives the limit as required. So we need to show

[C,D](Y, L) ∼= [I, [C,D]](∆Y, F)

naturally in Y, and to check projections.

Now,

[C,D](Y, L) ∼=
∫
C D(YC, LC) set of nat trans is end in Set

=
∫
C D(YC,

∫
I F(I, C)) rewriting LC

∼=
∫
C[I,D](∆(YC), F( , C)) by definition of limit

∼= [C, [I,D]](∆(Y•), F( , •)) end in Set is set of nat trans
∼= [I, [C,D]](∆Y, F)

where the last isomorphism holds since

[C, [I,D]] ∼= [C × I,D] ∼= [I, [C,D]].

Note that each line is natural in Y; and the third line gives the projections as required. �

We have the same result for colimits, ends and coends. However, it may be possible for non-
pointwise limits to exist if not all the FC’s have limits.





 ..

The Yoneda embedding preserves limits.



Consider I
D

C
H•

[Cop, Set]. Suppose we have a limit cone for D,

(
∫
IDI

kI DI)I∈I

We need to show that (C( ,
∫
IDI)

HkI
C( , DI))I∈I. is a limit for H• ◦ D. By the previous

result, it suffices to do this pointwise; so for all C ∈ C, we need that

(C(C
∫
IDI)

kI◦

C(C,DI))I∈I

is a limit for I C(C,DI), i.e. HC◦D. But we have already shown this, since representables
preserve limits, and the given cone is just HC of (

∫
IDI kI

DI)I∈I. �
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 .. ()

Suppose F : I × J D is such that FJ : I D has a limit
∫
I F(I, J) for all J ∈ J. Then we

have a functor ∫
I F(I, ) : J

∫
I F(I, J)

such that ∫
J

∫
I F(I, J)

∼=
∫
(I,J) F(I, J)

in the sense that if one exists, then so does the other, and they are isomorphic with corre-
sponding limit cones.



The right-hand side is a representation of [I × J,D](∆ , F); the left-hand side is a repre-
sentation of [J,D](∆ ,

∫
I F(I, )). Now,

[I × J,D](∆V, F) ∼= [I, [J,D]](∆V, F( , ))
∼=

∫
I[J,D](∆V, F(I, ))

= [J,D](∆V,
∫
I F(I, )).

Hence representations give the result. �

 ..

Suppose F : I × J → D such that
∫
I F(I, ) : J → D and

∫
J F( , J) : I → D exist. Then

∫
J

∫
I F(I, J)

∼=
∫
I

∫
J F(I, J)

in the same sense as above.



Both are isomorphic to
∫
(I,J) F(I, J). �

Note that also we have colimits, ends and coends commuting with themselves; also (co)ends
commute with (co)limits.

 .. ()

For X : C
op → Set, we have

X(U) ∼=
∫W

C(U,W) × X(W),





naturally in U.



We aim to show that

[Cop, Set](X, Y) ∼= [Cop, Set](
∫W

C( ,W) × X(W), Y)

and deduce result by above. So:

RHS ∼=
∫
U[

∫W
C(U,W) × X(W), Y(U)] set of nat trans is end in Set

∼=
∫
U

∫
W[C(U,W) × X(W), Y(U)] restate definition of colimit

∼=
∫
W

∫
U[C(U,W) × X(W), Y(U)] Fubini interchange

∼=
∫
W

∫
U[X(W), [C(U,W), Y(U)]] definition of function space

∼=
∫
W[X(W),

∫
U[C(U,W), Y(U)]] restate definition of end

∼=
∫
W[X(W), Y(W)] Yoneda restated

∼= [Cop, Set](X, Y) end in Set is set of nat trans

Hence, since the Yoneda embedding is full and faithful, we have the desired natural iso-
morphism

X ∼=
∫W

C( ,W) × X(W). �

 ..

Every presheaf is a colimit of representables.



By previous result, we have

XU ∼=
∫W∈C

C(U,W) × X(W)

The idea of the proof is that this is almost a colimit of representables. We would like to say

that it is
∫W∈C,x∈X(W)

C(U,W). Can we do this in any way?

We can, by defining the Grothendieck Fibration. Given X : C
op Set, we define a category

G(X) with

• objects being pairs (W, x),W ∈ C, x ∈ XW.
• morphisms (W, x) (W′, x′) being f : W W′ such that Xf(x′) = x.

There is a forgetful functor

P : G(X) C

(W, x) W

So we get G(X) P
C

H•

[Cop, Set], and

X(U) ∼=
∫ α∈G(X)

C(U, P(α))

Hence we get X ∼=
∫ α∈G(X)HP(α), a colimit of representables. �

 ..

A presheaf category [Cop, Set] is Cartesian closed.







Limits and colimits are computed pointwise, so we get the terminal object and binary prod-
ucts from those in Set. So we need to find function spaces. So, given Y, Z ∈ [Cop, Set], we
seek ZY ∈ [Cop, Set] such that

[Cop, Set](X, ZY) ∼= [Cop, Set](X × Y, Z)

naturally in X and Y. So put

ZY(U) = [Cop, Set](HU × Y, Z)
∼=

∫
V[C(V,U) × Y(V), Z(V)] end in Set, products ptwise.

Then

[Cop, Set](X, ZY) ∼=
∫
U[X(U), Z

Y(U)] end in Set

∼=
∫
U[X(U),

∫
V[C(V,U) × Y(V), Z(V)]] write in definition

∼=
∫
U

∫
V[X(U), [C(V,U) × Y(V), Z(V)]] restate defn of limit

∼=
∫
V

∫
U[X(U), [C(V,U)[Y(V), Z(V)]]] c.c. of Set, Fubini

∼=
∫
V

∫
U[X(U) × C(V,U), [Y(V), Z(V)]] c.c. of Set

∼=
∫
V[

∫ U X(U) × C(V,U), [Y(V), Z(V)]] restate defn of colimit
∼=

∫
V[X(V), [Y(V), Z(V)]] Density

∼=
∫
V[X(V) × Y(V), Z(V)] c.c. of Set

∼= [Cop, Set](X × Y, Z) end in Set, products ptwise.

Thus ZY is a function space as required. �
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 · Adjunctions

. · Definitions

 ..

Let F : C → D, G : D → C be functors. An adjunction F a G consists of an isomorphism

D(FX, Y) ∼= C(X,GY)

that is natural in X and Y. We say F is left adjoint to G, and G is right adjoint to F.

So, we have a correspondence

morphisms
FX Y

↔
morphisms
X GY



We write

FX
g

Y ∈ D

X
g

GY ∈ C

and
X

f
GY ∈ C

FX
f

Y ∈ D

We write ( ) for the adjunction operation, and call it transpose. Note f = f, g = g.





What do the naturality conditions mean? Naturality in X says that, for any h : X′ X,

D(FX, Y)
( )

◦Fh

C(X,GY)

◦h

D(FX′, Y)
( )

C(X′, GY)

commutes. Similarly, naturality in Y says that for any k : Y Y′,

D(FX, Y)
( )

k◦

C(X,GY)

Gk◦

D(FX, Y′)
( )

C(X′, GY)

commutes. That is,

X′ h X
f

GY

FX′ Fh FX
f

Y
and

FX
g

Y k Y′

X
g

GY Gk GY′

f ◦ h = f ◦ Fh k ◦ g = Gk ◦ g

Now, this is actually the Yoneda lemma in disguise:

D(FX, Y) ∼= C(X,GY)

is HFX ∼= C(X,G )

and C(X,GY) ∼= D(FX, Y)

is HGY
∼= D(F , Y)

Yoneda tells us that each of these natural transforms is completely determined by where the
identity goes:

FX
1FX FX

X
ηX

GFX
and

GX
1GY GY

FGY
εY Y

Then by naturality,

g = Gg ◦ ηX
FX

1FX FX
g

Y

X
ηX

GFX
Gg

GY

and

f = εX ◦ Ff
X

f
GY

1GY GY

FX
Ff

FGY
εY Y

And in fact, the ηX, εY are components of a natural transformation.

 ..

Given F a G, we have natural transformations η and ε with components given by ηX, εY.







Check naturality. For η, given f : X X′,

X
ηX

f

GFX

GFf

X′ ηX′
GFX′

must commute. Now, we have:-

X
ηX

GFX
GFf

GFX′

FX
1FX FX

Ff
FX′

1FX′

FX′

X
f

X′
ηX′

GFX′

But we have transposed twice, and hence we have equality as required. Similarly for ε. �

 ..

Given F a G, we call η : 1C GF the unit and ε : FG 1D the counit of the adjunction.

. · Examples

 ..

Free a forgetful. For example:

 U : Gp Set has a left adjoint F a U, where F(S) gives the free group on S; so we have

Gp(FS, G) ∼= Set(S, U(G))

 U : Alg Vect which forgets the multiplicative structure; we have F a U, where F(V) is
the free algebra on V.

 U : Ring Monoid has a left adjoint

Z ◦ : M ZM = {formal finite combinations
∑

λimi, λi ∈ Z,mi ∈ M.}

 U : Ab Gp has a left adjoint “free abelianization”: GAB = G/[G,G].
 U : Algk Liek has left adjoint L 7→ U(L) = universal enveloping algebra of L.

 ..

Reflections a inclusions a coreflections. If C → D has a left adjoint, it is called a reflector
and exhibits C as a reflective subset of D.

 As above, Ab → Gp; Ab is reflective in Gp.

 {
complete metric spaces,
uniformly cts functions

}
→

{
metric spaces,

uniformly cts functions

}

has left adjoint “completion”.

 {
compact Hausdorff spaces,

uniformly cts functions

}
→

{
topological spaces,

uniformly cts functions

}

has left adjoint Stone-C̆ech compactification.





 Gp → Monoid. Gp is reflective and coreflective in Monoid, via

M {m ∈ M | m is invertible }

 ..

Closedness. Let C be a cartesian closed category. Then for all B ∈ C, we have

× B a ( )B

i.e.
C(A × B, C) ∼= C(A, CB)

naturally in A and C.

 ..

Adjoints for representable functors are powers and copowers. Recall given an objectA ∈ C

and a set I, we can form the I-fold power:

AI =
∏

i∈I

A = [I, A]

and dually the I-fold copower:

I × A =
∐

i∈I

A.

By parametrised limits, we get functors:

[ , A] : Set C
op

× A : Set C

Now, Set(I,C(U,A)) ∼= C(U, [I, A]) ∼= Cop([I, A], U). So [ , A] a C( , A) = HA. Similarly
× A a C(A, ) = HA, since Set(I,C(A,U)) ∼= C(I × A,U).

So HA has an adjoint iff C has all small powers of A iff Cop has all small copowers of A.

If C has all small powers and copowers of A, we get

C(I × A,U) ∼= C(A, [I, U])

via Set(I,C(A,U)). So I × a [I, ] : C C.
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. · Triangle identities

 ..

Given an adjunction F a G, then the unit η : 1 GF and the counit ε : FG 1 satisfy the
triangle identities; that is, the following diagrams commute:

GY GFGY
ηGY

GY

GY

1GY

GFGY

GY

GεY
and

FX FGFX
FηX

FX

FX

1FX

FGFX

FX

εX







GY
ηGY

GFGY
GεY GY

FGY
1FGY FGY

εY Y

GY
1GY GY

and

FX
FηX

FGFX
εX FX

X
ηX

GFX
1GFX GFX

FX
1FX FX

�

 ..

An adjunction F a G is completely determined by natural transformations

η : 1 GF

ε : FG 1

satisfying the triangle identities.



Suppose we are given such ε, η. We need to show that

D(FX, Y) ∼= C(X,GY)

naturally in X and Y. So, given f : X GY, put

f : FX
Ff

FGY
εY Y

and given g : FX Y, put

g : X
ηX

GFX
Gg

GY

We need to check naturality. For naturality in X, we need, given h : X′ X, that fh =
f ◦ Fh. Now,

fh = εY ◦ F(fh)

= (εY ◦ Ff) ◦ Fh

= f ◦ Fh.

For naturality in Y, we need, for all k : Y Y′, kg = Gk ◦ g. Now,

kg = G(kg) ◦ ηY
= Gk ◦ (Gg ◦ ηY)

= Gk ◦ g.

Now we need to check that these are inverse: given f : X GY, we need that f = f. We
have

f = FX
Ff

FGY
εY Y.

So

f = X
ηX

f

GFX
GFf

GFGY
GεY GY

GY

ηGY
1GY





Note that the left hand circuit commutes by the naturality of η, and the right hand circuit

commutes by the first triangle identity, so f = f. Similarly, given g : FX Y,

g = FX
FηX

1FX

FGFX

εFX

FGg
FGY

εY Y

FX

g

Here, the left circuit commutes by the second triangle identity, and the right circuit com-

mutes by the naturality of ε; hence g = g, as required. �



Adjunctions can be composed:

C
F1

G1

D
F2

G2

E giving C
F2F1

G1G2

E

from E(F2F1X, Y) ∼= D(F1X,G2Y) ∼= C(X,G1G2Y).

. · Adjunctions as parametrised representations

To give a left adjoint to G : D → C, it is sufficient to give, for each X ∈ C, a representation for

C(X,G ) : D Set.

By parametrised representation, this extends uniquely to a functor which is the left adjoint we
are looking for. Dually, a right adjoint to F : C D is a representation for

D(F , Y) : C
op Set.

Recall “D has limits of shape I” means, for all D : I D, there exists a representation of

[I,D](∆ , D) : D
op Set

i.e., D has limits of shape I iff ∆ : D → [I,D] has a right adjoint. Dually, D has colimits of
shape I iff ∆ : D → [I,D] has a left adjoint.

. · Adjunctions as collections of initial objects

 ..

Given G : D → C and X ∈ C, we define the comma category (X ↓ G):

• objects are pairs (f, Y), X
f
GY;

• morphisms (f, Y)
h
(f′, Y′) are morphisms Y

h
Y′ such that

X
f f′

GY
Gh

GY′

commutes.

 ..

To give a left adjoint for G : D C is equivalent to giving, for all X ∈ C, an initial object
for the comma category (X ↓ G).







An initial object in (X ↓ G) is a pair (u, VX) with X u GVX such that, for all X
f
GY, there

exists a unique h : VX Y such that

X
u f

GVX
Gh

GY′

commutes. So

D(VX, Y) ∼= C(X,GY)

f 7→ Gh ◦ u

We need to check naturality in Y. So, for all g : Y Y′, we have

D(VX, Y) C(X,GY)

D(VX, Y′) C(X,GY′)

and so on elements

h Gh ◦ u

g ◦ h G(g ◦ h) ◦ u = Gg ◦ Gh ◦ u

and so this is a representation as required. �

. · Duality

We note that there are a lot of duality relations going on with adjunctions:

left adjoint right adjoint
unit counit

natural in X natural in Y
first triangle identity second triangle identity

Why is this? Consider

F a G, C
F

G
D also G a F, Cop

F

G
Dop

D(FX, Y) ∼= C(X,GY) Dop(Y, FX) ∼= Cop(GY, X)
F a G : D C G a F : Cop Dop

unit ηX : X GFX counit ηX : GFX X
counit εY : FGY Y unit εY : Y FGY


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 · Adjoint functor theorems

. · Preservation

 ..

Suppose F a G : D C. Then G preserves limits, and F preserves colimits.



ConsiderD : I D with limit cone (
∫
IDI

kI DI)I∈I. We need to show that G of it is a limit
cone for GD : I C. The cone becomes

(G
∫
IDI

GkI GDI)I∈I.

We need a natural transformations C( , G
∫
IDI)

∼= [I,C](∆ , GD) with components

C(V,G
∫
IDI)

∼= [I,C](∆V,GD)

f 7→ (GkI ◦ f)I∈I

Now,

C(V,G
∫
IDI)

∼= D(FV,
∫
IDI)

∼=
∫
I D(FV,DI)

∼=
∫
I C(V,GDI)

∼= [I,C](∆V,GD).

And on projections:

f 7→ f

7→ kI ◦ f

7→ GkI ◦ f

as required; and dually for F. �

. · General adjoint functor theorem

 ..

Given a category A, a collection I ⊆ A is weakly initial if for all A ∈ A, there exists a
morphism I A for some I ∈ I.



{initial object} is a weakly initial set.

 .. (   )

Suppose we have a functor G : D C that preserves small limits, and that D is locally
small and complete. Then G has a left adjoint iff for all X ∈ C, the category (X ↓ G) has a
weakly initial set.

This last condition is known as the solution set condition.







Here is the general structure of the proof:

D locally small D complete
G preserves
small limits

(X ↓ G) locally
small

P : (X ↓ G)
D creates

small limits

(X ↓ G)
complete

(X ↓ G) has
w.i.s. iff

(X ↓ G) has
initial object

G has a left
adjoint iff for
all X, (X ↓ G)

has initial
object

GAFT

where we define P : (X ↓ G) D to be the obvious forgetful functor. So:

 

P : (X ↓ G) D creates small limits.



Let D : I (X ↓ G) be a diagram. We need to show that, if PD has a limit cone, then
there is a cone

(V
cI DI)I∈I

in (X ↓ G) such that (PV
PcI PDI)I∈I is a limit for PD in D, and that any such cone is

itself a limit for D in (X ↓ G).

 Suppose PD : I D has a limit cone, say (L
cI PDI)I∈I:

L
cI

cI′

cI′′

PDI PDI′ PDI′′

 G preserves small limits, so (GL
GcI GPDI)I∈I is a limit for GPD in C.

GL
GcI

GcI′

GcI′′

GPDI GPDI′ GPDI′′





 (DI)I∈I gives a diagram in (X ↓ G)

X

GPDI GPDI′ GPDI′′

which is precisely a cone (X GPDI)I∈I in C. Hence we induce a unique morphism
u : X GL making everything commute:

X GL

GPDI GPDI′ GPDI′′
()

 Since everything in the diagram commutes, it forms a cone over D in (X ↓ G), with

vertex V = (X u GL). Moreover, by construction is it unique such that applying P to it

gives the original cone (L
cI PDI)I∈I. So we have shown that, given a limit cone for PD

there is a unique cone in (X ↓ G) that maps to it, given by () above. It remains to show
that this cone is universal.

 Given any cone ( (X
f
GY) DI)I∈I in (X ↓ G), we seek a unique factorisation (X

f
GY) V:

GY
Gh

X

f

GL

GPDI GPDI′

Applying P, we get a cone (Y PDI)I∈I in D, and since L is a limit, this induces a unique
morphism h : Y L making everything commute in D. But now, by the uniqueness of
u we have Gh ◦ f = u, since Gh ◦ f satisfies the conditions making u unique. So h is a
morphism in (X ↓ G):

GY
Gh

X

f

u GL

and so is the unique factorisation as required. So the cone () is indeed universal and P
creates limits as required. �

So now we can quickly deduce

 

For each X ∈ C, (X ↓ G) is locally small and complete.



Since D is locally small, so too is (X ↓ G). Now, let D be a diagram in (X ↓ G). Apply
P to get a diagram PD in D. This has a limit, since D is complete. And by lemma
, P creates it from a limit in (X ↓ G); i.e. D has a limit in (X ↓ G). So (X ↓ G) is
complete. �

Now, we need only prove





  (  )

If A is locally small and complete, then A has an initial object iff A has a weakly initial
set.



⇒ is clear; so we need to show ⇐. So let I be a weakly initial set in A. We need to
construct an initial object from I.

So, set P =
∏

I∈I I. This is a small product, since I is a set. Now set L to be a limit over
the diagram of all morphisms P P; this is a small limit since A is locally small.
We claim that L is initial in A. Note that L has projections

L

k k′

P P

Now:

 k = k′ since all triangles commute, and we have 1P : P P;
 for all f : P P, fk = k, since all triangles commute;
 k is monic (c.f. proof that an equaliser is monic).

We immediately have that I weakly initial ⇒ {P} weakly initial ⇒ {L} weakly initial.
So for all A ∈ A, there exists a morphism L A.

We need to show this morphism is unique. So suppose we have L
s

t
A. Consider

P

L
k

P
m

E
e

L
s

t

k

A

where E e L is an equaliser of s and t.

Now, (kem)k = k by () above. But k is monic, and k(emk) = k ◦ 1, so emk = 1. Now
se = te since e is an equaliser. Hence

s = semk = temk = t

as required. So L is indeed an initial object. �

So now by lemmas  and  together with Proposition .., we deduce that G has a left
adjoint iff, for each X ∈ C, (X ↓ G) has a weakly initial set, as required. �
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. · Special adjoint functor theorem

 ..

Consider monics A X. Define a 6 b iff ∃c : A B such that

A
c

a

B

b

X





commutes. Observe that if there exists such a c, then it is unique (since b is monic) and
monic (since a is monic). Now, set a ∼ b iff a 6 b and b 6 a. The equivalence classes
under ∼ are called subobjects of X.

 ..

A category C is wellpowered iff for all X ∈ C, the collection of subobjects of X is a set;
equivalently, iff there exists a set of representing monics into X.

 ..

A collection B → D is cogenerating if whenever X
f

g
Y such that

∀Y b B, B ∈ B, bf = bg

then f = g.

 .. (   )

Suppose G : D C such that

• C is locally small;
• D is locally small, complete, well-powered and has a cogenerating set;

Then G has a left adjoint iff it preserves limits.



⇒ is clear; the point is ⇐. We aim to show that each (X ↓ G) has a weakly initial set, so
we can apply GAFT. That is, given any X ∈ C, we find a set A ⊆ (X ↓ G) such that for each
f : X GY ∈ (X ↓ G), there exists morphism

X
a

f

GA

Gk

GY

for some X a GA ∈ A. So we fix X and construct such a set A. Let B be a cogenerating set
in D.

 Put
QX =

∏

X
x
GB,

B∈B

B

with projections QX

qx
B (one for each X x GB). This is a small product since B is a set

and C is locally small.

QX

qx
qx′

B B′ . . .

 D is well-powered, so pick a set of representing monics into QX (i.e. one monic for each





isomorphism class). Write M = {representing monics A Q}.

A

m

A′

m′

. . .

QX

 Put

A = {X a GA such that ∃A m QX ∈ M} ⊆ (X ↓ G).

This is a set since M is a set and C is locally small. We claim that A is the desired weakly
initial set in (X ↓ G). So we need to show, given any f : X GY ∈ (X ↓ G), that there
exists

X
a

f

GA

Gt

GY

with X a GA ∈ A. So we fix X
f
GY and seek such a triangle.

 Put
PY =

∏

y : Y B
B∈B

B

with projections PY
py

B (one for each y : Y B.

PY
py

py′

B B′ . . .



X

f

h

a

GA
Gt

Gg

GY

Gd

GQX
Ge

GPY

(*)

• form Y PY, show monic;
• form QX PY;
• take pullback; G preserves pullbacks;
• form X GQX making outside commute;

• induce X a GA as required;
• a ∈ A since g monic.

 Induce T d PY by the universal property of the product PY:

Y

d

y y′

PY

py py′

B . . . B′





So we get unique d such that

∀y : Y B, py ◦ d = y ().

We show that d is monic; suppose we have
s

t
Y d PY with ds = dt. Then certainly,

for all y : Y B, pyds = pydt. So by (), for all y : Y B, ys = yt. Hence s = t since B is
cogenerating. Hence d is monic.

 Induce QX
e PY by the universal property of product PY. To use this, we need to find for

each Y y B a morphism QX B.

Now, we have a projection QX

qx
B for all x : X GB, and given any Y

y
B, we certainly

have a morphism

x = X
f
GY

Gy
GB

so we can use projections qGy◦f : QX B:

QX

e

qGy◦f qGy′
◦fPY

py py′

B . . . B′

inducing a unique e : QX PY such that

∀y : Y B, qGy◦f = py ◦ e ().

 Form the pullback

A
t

g

Y

d

QX
e

PY

Now d is monic, so g is monic; without loss of generality we can assume g is a representing
monic (since it must be isomorphic to one, so we can take an isomorphic pullback). G
preserves pullbacks so

GA

Gg

GY

Gd

GQX
Ge

GPY

is also a pullback.

 Induce X h GQX by the universal property of the product GQX. Since G preserves limits,
GQX is indeed a product,

GQX =
∏

X
x
GB

B∈B

GB





with projections GQX

Gqx
GB, one for each x : X GB, B ∈ B).

X

h

x x′GQX

Gqx Gqx′

GB . . . GB′

So we have unique h such that

∀x : X GB, Gqx ◦ h = x ().

 We now show that the outside of the diagram (*) commutes, using the universal property
of the product GPY. For each y : Y B, we have the following diagram:

X

f

h
k

GY

Gd

Gy

GQX
Ge

GqGy◦f

GPY ()

()
Gpy

GB

Now, the outside commutes by (), and the triangles commute as shown. So we need show
that Ge ◦ h = Gd ◦ f.



We use the universal property of the product GPY to induce a unique k such that for all
y : Y B, Gpy ◦ k = Gy ◦ f; then we show that Ge ◦ h and Gd ◦ f both satisfy this
condition.

 G preserves limits, so GPY is a product

GPY =
∏

y : Y B
B∈B

GB

with projections GPY
Gpy

GB. Now, for each y : Y B we have a morphism X
Gg◦f

GB:

X

k

Gy◦f Gy′◦fGPY

Gpy Gpy′

GB . . . GB′





inducing a unique k : X GPY such that

∀y : Y B, Gpy ◦ k = Gy ◦ f ().

 Ge ◦ h and Gd ◦ f both satisfy this condition, since for all y : Y B, we have

Gpy ◦ Gd ◦ f = G(py ◦ d) ◦ f
()
= Gy ◦ f

and
Gpy ◦ Ge ◦ h = G(py ◦ e) ◦ h

()
= GqGy◦f ◦ h

()
= Gy ◦ f.

Hence by the uniqueness of k, we haveGe◦h = Gd◦f and so the outside of (*) commutes.

 Induce X a GA by the universal property of pullback (as in (*)). Then X a GA ∈ A since

there exists monic A
g
QX ∈ M, and we have a commuting triangle

X
a

f

GA

Gt

GY

in (*) as required.

So A is indeed weakly initial, and hence (X ↓ G) has a weakly initial set for allX ∈ C. So finally,
since D is locally small and complete, we can apply GAFT to see that G has a left adjoint. �
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 · Monads and comonads

. · Monads

Suppose we have an adjunction F a G : D C. Write T = GF : C C. We have natural
transformations

η : 1C GF = T ηX : X TX

GεF : GFGF GF

write as µ : T2 T µX : T
2X TX

We can think of η : 1C T as a “unit” and µ : T2 T as “multiplication”.

 ..

Under the above conditions, the following diagrams commute:

 Unit law:

T
Tη

1

T2

µ

T
ηT

1

T

i.e. ∀X

TX
TηX

1TX

T2X

µX

TX
ηTX

1TX

TX

commutes.





 Associativity:

T3
µT

Tµ

T2

µ

T2
µ T

i.e. ∀X

T3X
µTX

TµX

T2X

µX

T2X µX
TX

commutes.





GFX
GFηX

1GFX

GFGFX

GεFX

GFX
ηGFX

1GFX

GFX

commutes, since the left hand triangle is G of the triangle identity, and the right hand
triangle is the triangle identity of FX.



GFGFGFX
GεFGFX

GFGεFX

GFGFX

GεFX

GFGFX
GεFX

GFX

commutes as it is G of the naturality square of ε. �

 ..

A monad on a category C consists of a functor T : C C and natural transformations

η : 1 T “unit”

µ : T2 T “multiplication”

satisfying the unit and associativity laws as above.

 ..



( )∗ : Set Set

A A∗

Where A∗ = { lists (a1, . . . , an) | n > 0, each ai ∈ A }. Put

ηA : A TA = A∗

a (a)

and

µA : A
∗∗ A

((a11, . . . , a1n1), . . . , (ak1, . . . , aknk
)) (a11, . . . , a1n1 , . . . , ak1, . . . , aknk

)

Then (( )∗, η, µ) is a monad on Set - the “free monoid monad”.

 The identity functor is a monad.





 Let (M, e, ·) be a monoid. Then we have

M × : Set Set,

which we can equip with a monad structure. So set

ηX : X M × X

x (e, x)

µX : M × (M × X) M × X

(m1, (m2, x)) (m1m2, x)

Then the unit and associativity laws for the monad follow precisely from those for the
monoid.

 ..

Dually we have comonads, a functor L : D D with 1D

ε L δ L2 satisfying the dual of
the monad axioms.

. · Algebras for a monad

 ..

Let (T, η, µ) be a monad for C. An algebra for T consists of an object A ∈ C together with a

morphism TA θ A ∈ C such that the following diagrams commute:

A
ηA

1A

TA

θ

A

and

T2A
µA

Tθ

TA

θ

TA
θ

A.

A map of algebras (TA θ A) (TB
ϕ
B) is a morphism A

f
B such that

TA
Tf

θ

TB

ϕ

A
f

B

commutes. T-algebras and their maps form a category which we denote by CT.

 ..

 T = ( )∗ : Set Set. A T-algebra is precisely a monoid. For an algebra is a set A and a

function A∗ θ A giving multiplication:

(a1, a2, . . . , an) a1a2 . . . an
( ) e

The monad axioms tell us that the multiplication on A must be associative.
 T = id. Then CT ∼= C.

 T = M × . T-algebras are sets with a monoid action: M × A θ A.


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. · Free algebras

We can define a forgetful functor:

U : C
T

C

(TA θ A) A

A
f
B f

We may ask two obvious questions: doesU have a left adjoint; and does T arise naturally from
an adjunction?

 ..

U has a left adjoint F : C CT.



We construct F as follows:

• on objects, FA =



T2A

µA

TA


, the “free algebra on A”;

• on morphisms, F(A
f
B) =



T2A

µA

TA




Tf



T2B

µB

TB


.

We need to check three things: that FA and Ff satisfy the axioms for an algebra and a map
of algebras; that F is functorial; and that F is left adjoint to U. So:

 FA is a T-algebra:

TA
ηTA

1TA

T2A

µA

TA

T3A
µTA

TµA

T2A

µA

T2A µA
TA

by unit law for T by associativity law for T.

And Ff is a map of algebras:

T2A
T2f

µA

T2B

µB

TA
Tf

TB

by naturality of µ.

 The functoriality of F follows from that of T.

 We need to show that

C
T


FA,

TB
θ

B


 ∼= C(A, B)





naturally in A and B. We construct an isomorphism as follows:

a Given a map of algebras in the LHS

T2A
Tg

µA

TB

θ

TA g B,

we take A
ηA

TA B ∈ C(A, B). Naturality follows from that of η.

b Given a morphism A
f
B in the RHS, we construct an algebra map

T2A
T2f

µA

T2B

µB

Tθ
Tb

θ

TA
Tf

TB
θ

B

The left hand square commutes by naturality of µ; the right hand square commutes by
the second T-algebra axiom. Hence the outside square commutes, i.e. it is a map of
algebras.

c We show that these are mutually inverse:

• Starting with f : A B on the RHS, we get taken to θ◦Tf on the left hand side, and
thence to θ ◦ Tf ◦ ηA. So we need to show θ ◦ Tf ◦ ηA = f. We have:

A
ηA

f

TA
Tf

TB
θ

B

B

ηB
1B

The left hand square commutes by naturality of η and the right hand triangle by the
first T-algebra axiom. So we are done.

• Starting with g : TA B on the LHS, we go to g ◦ ηA and then to θ ◦ T(g ◦ ηA). This
time we have:

TA
TηA

1TA

T2A

µA

Tg
TB

θ
B

TA

g

where the left hand triangle commutes by the unit law for T, and the right hand
square commutes since g is a T-algebra map.

So we have our adjunction as required. �

 ..

The adjunction F a U gives rise to the monad (T, η, µ).







Recall that the adjunction (F, U, η′, ε′) gives rise to a monad (UF, η′, Uε′F). So we need to
check that (UF, η′, Uε′F) = (T, η, µ).

 It is easy to see that UF = T.

 Recall the adjunction (CT(FA, TB θ B) ∼= C(A, B) takes g to g ◦ ηA. So the unit η′A is given
by

1FA 1FA ◦ ηA = ηA

as required.

 Recall

C


A,U



TB

θ

B





 ∼= C

T


FA,

TB
θ

B




has f θ ◦ Tf. So the counit ε′X at X = TB θ B is given by

1UX θ ◦ T1 = θ

We need to show Uε′FA = µA. But FA =



T2A

µA

TA


 so Uε′FA = µA as required.

�

 · Monadicity

. · Introduction

 ..

Given a monad T : C C, we define a category AdjT with

• objects C ⊥

F

G

D inducing T;

• morphisms D1

D

G1

C

F1

F2

D2

G2

such that F2 = DF1 and G1 = G2D.

It is possible to show that in fact FT a UT is a terminal object in AdjT; so given F a G, we get
a unique morphism K in AdjGF:

D

!K

G

C

F

FT

CT

UT


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. · Eilenberg-Moore Comparison Functor

 ..

Given an adjunction F a G : D C, the Eilenberg-Moore comparison function K is the
unique morphism K in AdjGF:

D

!K

G

C

F

FT

CT

UT

and is given by:

• on objects, KY =
GFGY

GεY

GY

• on morphisms, K(Y
f
Z) = GFGY

GFGf

GεY

GFGZ,

GεZ

GY
Gf

GZ

We need to check that K is in fact well defined; i.e. that KY is an algebra and that Kf is a map
of algebras. For KY we have

GY
ηGY

1GY

TGY

GεY

GY

which commutes by the first triangle identity, and

T2GY
µGY

TGεY

TGY

GεY

TGY
GεY

GY

=

GFGFGY
GεFGY

GFGεY

GFGY

GεY

GFGY
GεY

GY





which commutes by naturality of ε. Similarly for Kf, we have

GFGY
GFGf

GεY

GFGZ,

GεZ

GY
Gf

GZ

commuting by the naturality of ε. And clearly K is functorial (since G is), and the following
diagrams commute:

D

KC

F

FT

CT

and

D

K

G

C

CT

UT

 ..

An adjunction F a G is called monadic if the Eilenberg-Moore comparison functor is an
equivalence of categories. A functor G is called monadic if it has a left adjoint F with F a G
monadic. A category D with an understood forgetful functor D

U
C is called monadic over

C if U is monadic.

 ..

 Gp is monadic over Set;

 Vect is monadic over Set;

 Cpct Haus is monadic over Set;

 Top is not monadic over Set;

 Poset is not monadic over Set.

. · Monadicity theorems

Suppose we have an adjunction F a G : D C giving rise to a monad T = GF. Asking
whether F a G is monadic is essentially asking when D “looks like” CT, and when G “looks
like” UT. So what do CT and UT actually look like?



 Every algebra is a coequaliser of free algebras. Intuitively we can see this from “ordinary”
algebra, where every algebra isa quotient of a free algebra. So monadicity theorems are all
about existence, preservation, reflection and creation of special kinds of coequaliser.

 UT creates ‘UT-special’ coequalisers. In fact this property characterises monadicity. Hence
we arrive at our first attempt at a monadicity theorem:



G is monadic iff G creates G-special coequalisers.

Look more closely at (). We want D to be like CT. So certainly we would like every object in
D to be a coequaliser of free objects, i.e. objects of the form FX. This says that “the objects we
do have look like algebras”, i.e. that K is full and faithful.





We also need to show that we “have all of them”, i.e. that K is essentially surjective. So does K
hit all of the coequalisers? That is, can we find something in D which goes to each coequaliser?
Well, if D has all the “special coequalisers” and G preserves them, then we can lift along UT,

so seeing that K sends it to the right place. Hence we get



F a G is monadic iff D has and G preserves G-very-special coequalisers, and every object
of D is a coequaliser of free ones.

Can we avoid mentioning free objects in D? In fact, the coequaliser in question is
εFGY

FGεY

εY
;

and G of this is a coequaliser in C, so it suffices to prove that G reflects these. So K is full and
faithful iff G reflects G-very-special coequalisers. Hence



G is monadic iff D has and G preserves and reflects G-very-special-coequalisers.

. · Background on coequalisers

 ..

A split coequaliser is a fork A
f

g
B e C (i.e. ef = eg) with a splitting

A
f

g
B

e

t

C
s

such that es = 1C, ft = 1B and gt = se.

 ..

A split coequaliser is a coequaliser.



Suppose we have a fork A
f

g
B h D, say, so that hf = hg. We need to show that there

exists a unique C k D such that

A
f

g
B

e

h

C

!k

D

commutes. Now consider hs : C D. We have

hse = hgt

= hft

= h

so hs certainly makes the diagram commute. And suppose k is any other such; then

ke = h = hse ⇒ kes = hses ⇒ k = hs





so hs is the unique such. �

 ..

An absolute coequaliser is a coequaliser that is preserved as a coequaliser by any functor.

 ..

A split coequaliser is an absolute coequaliser.



A split coequaliser is defined entirely by a commutative diagram. �

 ..

For any T-algebra
TA

θ

A
, the following is a split coequaliser:

T2A
µA

Tθ
TA θ A



We exhibit a splitting

ηTA ηA

. For:

 θηA = 1A by the unit axiom for T-algebras.
 µAηTA = 1TA by the unit axiom for the monad T.
 Tθ ◦ ηTA = ηA ◦ θ by the naturality of η. �

 ..

• An absolute coequaliser pair is a pair
f

g
that has an absolute coequaliser.

• A G-absolute coequaliser pair is a pair f, g such that
Gf

Gg
has an absolute coequaliser.

• A split coequaliser pair is a pair
f

g
that has a split coequaliser.

• A G-split coequaliser pair is a pair f, g such that
Gf

Gg
has a split coequaliser.

In our earlier terminology, a “G-special coequaliser” is a coequaliser of aG-absolute-coequaliser
pair. and a “G-very-special coequaliser” is a coequaliser of a G-split-coequaliser pair.

 ..

FGFGY
εFGY

FGεY

FGY is a G-split coequaliser pair.



Recall KY =
GFGY

GεY

GY
is an algebra. Hence by previous result

GFGFGY
GεFGY

GFGεY

GFGY
GεY GY

is a split coequaliser. �


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. · Beck’s Monadicity Theorem

 ..

Let F a G : D C. Then the following are equivalent:

 The adjunction is monadic;
 G creates coequalisers for all G-absolute-coequaliser pairs;
 D has coequalisers of all G-split coequaliser pairs, and G preserves and reflects them.

To prove this, we shall first prove a series of propositions.

 ..

UT : CT C creates coequalisers for all UT-absolute-coequaliser pairs.



A UT-absolute-coequaliser pair is a pair of morphisms A
f

g
B such that

TA
Tf

Tg

θ

TB

ϕ

A
f

g
B

“serially commutes”, and such that A
f

g
B has an absolute coequaliser A

f

g
B e C in C.

We aim to show that there is a unique lift to a fork

TA
Tf

Tg

θ

TB

ϕ

Te
TC

ψ

A
f

g
B

e
C

in CT, and that it is a coequaliser in CT.

 Induce unique ψ by the universal property of coequaliser; the bottom fork is an absolute
coequaliser, hence preserved by T; so the top fork is also a coequaliser. Now,

e ◦ ϕ ◦ Tf = e ◦ f ◦ θ = e ◦ g ◦ θ = e ◦ ϕ ◦ Tg

so this induces a unique ψ making the right hand square commute.

 We show that TC
ψ
C is an algebra. For the first axiom, consider the diagram:

B
e

1B

ηB

C

1C

ηC

TB

ϕ

Te
TC

ψ

B e C





We need to show the right hand triangle commutes. But everything else commutes, and
e is epic (since a coequaliser). Hence the right hand triangle commutes. Similarly, for the
second axiom, consider:

T2B
T2e

Tϕ

ηB

T2C
µC

Tψ

TB

ϕ

Te
TC

ψTB
Te

ϕ

TC
ψ

B
e

C

We need to show the right hand face commutes. But everything else commutes and T2e is
epic (since a coequaliser); hence the right hand square does commute.

 It remains to check that the given fork is a coequaliser in CT. Consider:

TA
Tf

Tg

θ

TB

Th

ϕ

Te
TC

ψ

Th

TY

α

A
f

g
B

e

h

C

!h

Y

where we induce the unique h by the bottom coequaliser. Then since Te is epic, the right
hand square commutes, exhibiting h as a unique factorisation in CT as required. �

 ..

For any algebra TA θ A, the following diagram is a coequaliser in CT:

T3A
TµA

T2θ

µTA

T2A

µA

Tθ
TA

θ

T2A
µA

Tθ
TA

θ
A



Observe that this diagram serially commutes, i.e. it is a fork. Also note that UT of it is an
absolute coequaliser (by Prop ..). SinceUT creates and in particular reflects coequalisers
for UT-absolute coequaliser pairs, this fork must itself be a coequaliser. �





 ..

K is full and faithful iff the following diagram is a coequaliser for all A ∈ D:

FGFGA
εFGA

FGεA

FGA
εA A



The right hand side says: given any m : FGA B such that m ◦ εFGA = m ◦ FGεA, there
exists a unique f : A B such that f ◦ εA = m. The left hand side says:

K : D(A, B) C
T(KA, KB)

f Gf

is a bijection for all A, B ∈ D (recall Kf = Gf). That is, given any h : KA KB, there is a
unique f : A B such that h = Gf. But:



A map h : KA KB is precisely a map GA h GB such that h ◦ εFGA = h ◦ FGεA.



Such an h makes

GFGA
GFh

GεA

GFGB

GεB

GA
h

GB

commute; i.e. h ◦ GεA = GεB ◦ GFH. Now:

GFGA
GεA GA h GB

FGFGA
FGεA FGA h GB

along the leftish leg, and

GFGA
1GFGA GFGA GFh GFGB

GεB GB

FGFGA
εFGA FGA Fh FGB

εB B

along the rightish one; but εB ◦ Fh = h, so the condition becomes h ◦ εFGA = h ◦
FGεA. �

But now, under adjunction, h : GA GB becomes h : FGA B, and Gf : GA GB
becomes f◦εA : FGA B. Hence, the left hand side statement becomes: given any h : FGA

B such that h ◦ εFGA = h ◦ FGεA, there exists unique f : A B such that h = f ◦ εA,
which is precisely the right hand side statement. �

 ..

K is full and faithful if G reflects coequalisers for all G-split coequaliser pairs.



G of FGFGA
εFGA

FGεA

FGA is a split coequaliser by ... So if G reflects such coequalisers,

then this fork is a coequaliser. And hence K is full and faithful by the previous result. �





 ..

If D has and G preserves coequalisers for all G-split coequaliser pairs, then K is essentially
surjective.



Given any algebra TA θ A, we seek Y ∈ D such that KY ∼= TA θ A in CT. Recall that

T3A
TµA

T2θ

µTA

T2A

µA

Tθ
TA

θ

T2A
µA

Tθ
TA

θ
A

()

is a coequaliser in CT, and that the left hand square is a UT-split coequaliser pair (since the
bottom is a split coequaliser pair by ..).

Also by .., FGFA
εFA

Fθ
FA is a G-split coequaliser pair, and K of it is the pair in () (since

K ◦ UT = G).

So it has a coequaliser in D,

FGFA
εFA

Fθ
FA h Y ()

say. We show that K of this coequaliser is a coequaliser of the same parallel pair we started
with. Recall the following diagram commutes:

D
K

G

CT

UT

C

G preserves coequalisers of G-split coequaliser pairs; so G of () is a coequaliser in C. K
of the pair is a UT-split-coequaliser pair; UT creates coequalisers for such. So K of () is a
coequaliser. Hence it must be isomorphic to (); i.e. KY ∼= (TA

θ
A). �

We are now in a position to prove Beck’s Monadicity Theorem.

 ( ..)

 ⇒ : Since UT creates coequalisers for UT-absolute coequaliser pairs, and K is an equiva-
lence of categories, so the same holds for G.

 ⇒ : Immediate from definitions; a split coequaliser is an absolute coequaliser, and “cre-
ates” implies “reflects”; so G preserves and reflects split coequalisers.
Since G creates split coequalisers, D has them. And this was of getting coequalisers in D

does give all the coequalisers we want, so by construction all these are taken to coequalisers
in C.

 ⇒ : by Prop .. and ...

�





L E C T U R E 23 · 0 1 / 1 2 / 0 2

 · Bicategories

. · Definitions

 ..

A category C is given by:

• DATA:

– a collection obC of objects;
– for each pair of objects, a collection of morphisms C(A, B);
– for each A, B, C ∈ obC, a function

cABC : C(B, C) × C(A, B) C(A, C)

(g, f) g ◦ f;

– for each A ∈ C, a function

iA : C(A,A)

∗ idA .

• AXIOMS:

– associativity — (hg)f = h(gf);
– unit — f ◦ 1 = f = 1 ◦ f.

 ..

A bicategory B is given by

• DATA:

– a collection obB of -cells;
– for each pair A, B of -cells, a category B(A, B), with

∗ objects being -cells A B;

∗ morphisms being -cells A
f

g

B ;

∗ composition A

f

α

h

β
g B , β ◦ α.

– composition: for each A, B, C ∈ B, a functor

cABC : B(B, C)×B(A, B) B(A, C)
(g , f) gf


 B

g

g′

β C , A
f

f′

α B


 A

gf

g′f′

β∗α C





– identities: for each A ∈ B, a functor

IA : 1 B(A,A)

∗ A
IA
A

– associativity: for all composable f, g, h ∈ B, invertible -cells

afgh : (hg)f ∼ h(gf)

natural in f, g and h.
– unit: for all f ∈ B(A, B):

rf : f ◦ IA ∼ f

lf : IB ◦ f ∼ f

natural in f.

• AXIOMS:

– the associativity pentagon commutes:

((kh)g)f a∗1

a

(k(hg))f

a

(kh)(gf)

a

k((hg)f)

1∗a

k(h(gf))

– the unit triangle commutes:

(gI)f a

r∗1

g(If)

1∗l

gf

 ..

 If a, r and l are identities, we have a strict -category; for example Cat.

 A bicategory with one object is called a monoidal category.
 Set has the structure of a monoidal category.

-object bicategory ↔ monoidal category
-cells ↔ objects
-cells ↔ morphisms

composition of -cells ↔ “tensor product” of objects A ⊗ B

In Set we take A ⊗ B = A × B the usual Cartesian product. Then a : A × (B × C) ∼

A× (B×C); and we take I to be an object such that A× I ∼= A ∼= I×A; i.e. any one-object
set.

 There is a bicategory of rings, bimodules and bimodule homomorphisms.
 Any category can be regarded as a bicategory with trivial -cells.


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. · Slightly higher-dimensional categories

 ..

A monoidal category is a category C equipped with

• a functor ⊗ : C × C C;
• an object I ∈ obC

together with natural isomorphisms

aABC : (A ⊗ B) ⊗ C ∼ A ⊗ (B ⊗ C)

lA : I ⊗ A ∼ A

rA : A ⊗ I ∼ A

such that the following diagrams commute:

((A ⊗ B) ⊗ C) ⊗ D
a⊗1

a

(A ⊗ (B ⊗ C)) ⊗ D

a

(A ⊗ B) ⊗ (C ⊗ D)

a

A ⊗ ((B ⊗ C) ⊗ D)

1⊗a

A ⊗ (B ⊗ (C ⊗ D))

(A ⊗ I) ⊗ B a

r⊗1

A ⊗ (I ⊗ B)

1⊗l

A ⊗ B

 ..

Given any category C we can form a monoidal category from it:

• objects are finite lists (x1, . . . , xn) of objects of C;

• morphisms (x1, . . . , xm)
(f1,...,fm)

(y1, . . . , ym) with fi : xi yi.

I is the empty list, and ⊗ is concatenation of lists. This is known as the “free strict monoidal
category on C”.

We can draw morphisms as

x1,

f1

x2,

f2

. . . , xm

fm

y1, y2, . . . , ym

We have seen other examples of monoidal categories; for instance, Set with A ⊗ B = A × B.
However, in this case we could have equally well chosen to use B × A, since we have A × B ∼=
B × A — a symmetry





 ..

A symmetry for a monoidal category (C,⊗, I, a, r, l) is given by isomorphisms

γAB : A ⊗ B ∼ B ⊗ A

natural in A and B such that the following diagrams commute:

(A ⊗ B) ⊗ C
γ⊗1

a A ⊗ (B ⊗ C)
γ

(B ⊗ A) ⊗ C

a

(B ⊗ C) ⊗ A

a

B ⊗ (A ⊗ C)
1⊗γ

B ⊗ (C ⊗ A)

A ⊗ I
γ

r

I ⊗ A
l

A

A ⊗ B
γ

1

B ⊗ A

γ

A ⊗ B

We call such a category a symmetric monoidal category.

 ..

Let C be the category with objects the natural numbers and morphisms given by

C(n,m) =

{
Sn n = m

∅ n 6= m

So we can draw morphisms as

5

5

and we can compose them. Now, we can make C into a symmetric monodial category by
defining ⊗ on objects to be addition (a strictly associative map!), I to be 0, and γnm given
by

n m





We define ⊗ on morphisms to be juxtaposition of permutations; for example

4

⊗

2

=

6

And our axioms say

A B C

=

A B C

and

A B

=

A B

which is ‘pictorially obvious’. In fact, any two morphisms that are ‘pictorially the same’ are
the same.

 ..

Just as for monoidal categories, we can form the “free strictly associative symmetrical
monoidal category” on a category C. The objects are finite lists, and the morphisms are
as in the previous example, but labelled by morphisms of C; for example

x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4

f
1

f
2

f
3

f
4

Note that we do not distinguish over- and under-crossings. But we could; so we would have
diagrams that looked like

That is, instead of our symmetry being

A B

it is

A B





Note that one of the axioms for a symmetry does not now hold; we still have

A B C

=

A B C

but

A B

6=

A B

 ..

A braided monoidal category is a monoidal category equipped with a braiding; that is, iso-
morphisms

cAB : A ⊗ B → B ⊗ A

natural in A and B, and denoted by

A B

, such that

A B C

=

A B C

and

A B C

=

A B C

Note that we have another braiding

c
′
AB = c

−1
BA i.e.

A B

but in general c 6= c
′; if the two are equal, then we in fact have a symmetry.

Note that in the symmetric case we did not have to specify both of the above axioms, as one
was the inverse of the other.



As before, we can form a “free braided monoidal category” on C by labelling strands. Then
to check that diagrams commute we check each strand and check that the underlying
braids are the same.




