
C A T E G O R Y T H E O R Y

Dr E. L. Cheng

e.cheng@dpmms.cam.ac.uk

http://www.dpmms.cam.ac.uk/∼elgc2 · Michaelmas 2002

L E C T U R E 2 · 1 4 / 1 0 / 0 2

 · Categories, functors and natural transformations

. · Categories

 ..

A category C consists of:

• a collection of objects, obC;
• For every pair X, Y ∈ obC, a collection C(X, Y) = HomC(X, Y) of morphisms f : X Y,

equipped with:

• for each X ∈ obC, an identity map idX = 1X ∈ C(X, X);
• for each X, Y, Z ∈ obC, a composition map

mXYZ : C(Y, Z) × C(X, Y) → C(X, Z)

(g, f) 7→ g ◦ f = gf,

satisfying:

– unit laws — if f : X → Y then 1Y ◦ f = f = f ◦ 1X

– associativity — if X
f
Y

g
Z h W, then h(gf) = (hg)f.

A category is said to be small if obC and all of the C(X, Y) are sets, and locally small if each
C(X, Y) is a set.



 If f ∈ C(X, Y), we say that X and Y are the domain (or source) and the codomain (or target)
of f.

 Morphisms are also referred to as maps or arrows.
 We can write HomC for the collection of all morphisms.
 It is convenient and customary to assume that the C(X, Y) are disjoint for distinct pairs

(X, Y).
 We don’t worry ourselves with the niceties of set theory.

 ..

A category C is called discrete if the only morphisms are identities; i.e.

C(X, Y) =

{
{1X} if X = Y

∅ otherwise.

 ..

 Large categories of mathematical structures:

a Set of sets and functions.
b Categories derived from or related to Set:



• Pfn of sets and partial functions;
• Rel of sets and relations;
• Set∗ of pointed sets and base point preserving functions.

c Algebraic structures and structure-preserving maps:

• Grp of groups and group homomorphisms;
• Ab of abelian groups and group homomorphisms;
• Ring of rings and ring homomorphisms;
• Vec of vector spaces over R;
• Mat of natural numbers and n × m matrices.

d Topological categories:

• Top of topological spaces and continuous maps;
• Haus of Hausdorff spaces and continuous maps;
• Met of metric spaces and uniformly continuous maps;
• Htpy of topological spaces and homotopy classes of maps.

 Mathematical structures as categories:

a Posets: a poset (P,6) can be regarded as a category C with objects the elements of P and
precisely one morphism x → y when x 6 y and none otherwise.

b Monoids: a category with just one object is a monoid.
c Groups: a group G can be regarded as a category with just one (formal) object and

whose morphisms are the elements of G.

 Small categories can be presented by generators and relations. From a directed graph we
can generate a category of “paths through the graph” and then add relations imposing
equalities between some paths with the same domain and codomain.

a There is a category  with no objects and no morphisms, generated by the empty graph.
b There is a category  with one objects and one (identity) morphism, generated by the

graph with just one vertex.
c There is a category generated by the graph with one vertex and one edge. It is isomor-

phic to the additive monoid N.

d There is a category generated by the graph with one vertex and one edge s say, together
with the relation s2 = 1. It has one object and two morphisms and is isomorphic to the
cyclic group of order .

e There is a category generated by the graph with two vertices and one edge between
them. It has two objects and three morphisms and is isomorphic to the poset  = {0 6

1}.

. · Universal properties

 ..

A morphism f ∈ C(X, Y) is an isomorphism if ∃g ∈ C(Y, X) such that gf = 1X and fg = 1Y.
We say g is an inverse for f.

 ..

If g1 and g2 are inverses for f, then g1 = g2.



g1 = g1 ◦ 1Y = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = 1X ◦ g2 = g2. �



 ..

 The identity map is an isomorphism.

 The composition of two isomorphisms is an isomorphism.



 1X is clearly self-inverse.
 Let f ∈ C(Y, Z), g ∈ C(X, Y) be isomorphisms, with respective inverses h ∈ C(Z, Y), k ∈

C(Y, X). Then we claim that fg ∈ C(X, Z) is an isomorphism, with inverse kh ∈ C(Z, X).
For

(fg)(kh) = f(gk)h = f(1Y)h = fh = 1Z

(kh)(fg) = k(hf)g = k(1Y)g = kg = 1X

so we have the desired result. �

 ..

A terminal object in C is an element T ∈ obC such that ∀X ∈ C, ∃! morphism X
k

−→T.



In Set, every -element set is terminal. So sometimes we denote a terminal object by 1.

 ..

Suppose 1 and 1′ are terminal in C. Then there exists a unique isomorphism f ∈ C(1, 1′).



Since 1′ is terminal, there is a unique morphism f : 1 → 1′. Similarly, 1 is terminal, so
there is a unique morphism f′ : 1′ → 1. Now consider f′ ◦ f ∈ C(1, 1). Since 1 is terminal,
there is a unique morphism 1 → 1, i.e. the identity. So f′ ◦ f = id1; similarly f ◦ f′ = id1′ .

Hence f is the desired unique isomorphism. �

 ..

Given A, B ∈ obC, a product of A and B is an object A × B equipped with projections

A × B
p q

A B,

such that for all f : C → A, g : C → B, ∃!morphism (f, g) : C → A×B such that p◦(f, g) =
f and q ◦ (f, g) = g; i.e. such that

C
f g(f,g)

A × B

p q
A B

commutes.



In Set, A × B = { (a, b) | a ∈ A, b ∈ B } with p, q the first and second projections.



Note however, that we could also have taken p, q to be the second and first projections, or
the set to be { (b, a) | b ∈ B, a ∈ A }.

 ..

If
D

p q

A B
and

D′
p′ q′

A B

are products of A, B ∈ C, then ∃! isomorphism k : D → D′ such that q′k = q and p′k = p.



Consider the diagrams

D

p q
k

D′

p′ q′
k′

D′

p′ q′

D

p q

A B A B.

By our definition of product, k is the unique morphism D → D′ s.t. these diagrams com-

mute; so q′k = q and p′k = p certainly.

We claim that k′ is an inverse for k. For consider k ◦ k′ : D′ → D′. We have

p′ ◦ (k ◦ k′) = (p′ ◦ k) ◦ k′ = p ◦ k′ = p′

q′ ◦ (k ◦ k′) = (q′ ◦ k) ◦ k′ = q ◦ k′ = q′

Hence

D′

p′ q′k◦k′

D′

p′ q′

A B

commutes. But by the definition of product, there is a unique morphism D′ → D′ that
makes this diagram commute, i.e. the identity. So k ◦ k′ = idD′ . Similarly k′ ◦ k = idD. So
k is indeed an isomorphism, and is the unique one s.t. q′k = q and p′k = p. �

 ..

If ∀A, B ∈ C, there exists a product A × B, we say C has all binary products.

 ..

If C is a category with binary products, then given f ∈ C(A, C), g ∈ C(B,D), there exists a
unique morphism f × g ∈ C(A × B, C × D) such that



A × B
p0 q0

f×gA

f

B

gC × D

p1 q1
C D

commutes.



Immediate from definition of product. �

L E C T U R E 3 · 1 6 / 1 0 / 0 2

 ..

Suppose C is a category with binary products. Given B, C ∈ obC, a function space or
exponential is an object CB equipped with an evaluation morphism ε : CB × B → C such
that ∀f : A × B → C, ∃! f : A → CB such that

A × B
f

f×1B

C

CB × B

ε

commutes, i.e. ε ◦ (f × 1B) = f.

In Set, CB = { f : B → C } = [B, C]. There is an evaluation map

ε : CB × B → C

(g, b) 7→ g(b).

Given f : A × B → C, fix a ∈ A to get

fa : B → C

b 7→ f(a, b).

So we have a function

f : A → CB

a 7→ fa,

such that

f(a, b) = fa(b)

= ε(fa, b)

= ε ◦ (f × 1B)(a, b).

So ε ◦ (f × 1B) = f as required.



. · Categorical constructions

 ..

A subcategory D of C consists of subcollections

• obD ⊆ obC;
• HomD ⊆ HomC,

together with composition and identities inherited from C. We say D is a full subcategory
of C if ∀X, Y ∈ D, D(X, Y) = C(X, Y), and a lluf subcategory of C if obC = obD.

We can think of the data for a category as

HomC

c1

c2

obC

We could have c1 giving us the domain of a morphism and c2 the codomain, or vice verse.
This motivates the definition:

 ..

Given a category C, the dual or opposite category Cop is defined by:–

• obC = obCop;
• C(X, Y) = Cop(Y, X);
• identities inherited;
• fop ◦ gop = (g ◦ f)op.

   

Given any property, feature or theorem in terms of diagrams of morphisms, we can immedi-
ately obtain its dual by reversing all the arrows (this is often indicated by the prefix “co-”).

 ..

 The dual notion of a terminal category object is an initial object. That is, an object I ∈ C

such that for all Y ∈ C, there exists a unique f : I Y. For example, the (unique) initial
object in Set is ∅; we sometimes write 0 for an initial object.

 The dual of a product is a coproduct:

A q B
p q

A B

where p, q are coprojections such that, for any f ∈ C(A, C), g ∈ C(B, C), ∃! h : A q B → C
such that

C
f gh

A q B

p q
A B

commutes.

 ..

A morphism A
m

−→ B is monic iff given any f, g : C → A, we have mf = mg ⇒ f = g.

Dually, a morphism A
e

−→ B is epic iff given any f, g : B → C, we have fe = ge ⇒ f = g.



It is easy to see that any isomorphism is epic and monic. In Set, a morphism is monic iff it is
injective, and epic iff it is surjective.

 ..

Given C a category and X ∈ obC, then the slice over X, C/X is the category with:

• objects (Y, f), where f : Y → X ∈ C;
• morphisms h : (Y1, f1) → (Y2, f2) such that

Y1
h

f1

Y2

f2

X

commutes, i.e. f2h = f1.

Dually, we have the slice under X, X/C, with:

• objects (Y, f), where f : X → Y ∈ C;
• morphisms h : (Y1, f1) → (Y2, f2) such that

X

Y1
h

f1

Y2

f2

commutes, i.e. hf1 = f2.

We have a terminal object (X, 1X) in C/X and dually an initial object (X, 1X) in X/C.

. · Functors

 ..

Let C and D be categories. A functor F : C → D associates

• with each X ∈ obC, an object FX ∈ obD;
• with each f ∈ C(X, Y), a morphism Ff ∈ D(FX, FY),

such that

• F1X = 1FX;
• F(gf) = Fg ◦ Ff.

L E C T U R E 4 · 1 8 / 1 0 / 0 2

 ..

We define the category Cat of small categories:-

• For any category C there is an identity functor

1C : C → C

X 7→ X

f 7→ f



• Composition of functors C
F

−→ D
G

−→ E with GF defined in the obvious way.

Similarly we have CAT, the category of large categories and functors.

 ..

 Cat has an initial object 0.
 Cat has a terminal object 1.
 Cat has products; given C,D ∈ obCat, we have the product C × D with

• objects (c, d), c ∈ C, d ∈ D;
• morphisms (f, g), f : c → c′ ∈ C, g : d → d′ ∈ D.

 ..

A functor F : C → D is faithful/full/full and faithful if C(X, Y) → D(FX, FY) is injective/
surjective/an isomorphism.

 ..

 Functors between collections of mathematical objects:

a forgetful functors:

Gp → Set

Ring → Set

Ring → Ab

Haus → Top;

b free functors:

Set → Gp

Set → Mnd;

c inclusion of subcategories:

Ab → Gp

Haus → Top.

 Functors between mathematical structures:

a posets f : (P,6) → (Q,4) is an order-preserving map;
b groups f : G → H is a group homomorphism.

 Presheaves – a functor Cop → Set is called a presheaf on C.

 Diagrams – a functor C → Set is called a diagram on C.

Note that a functor will preserve any property that is expressible as a commutative diagram.

For example, isomorphisms are preserved by all functors; if f is an isomorphism, then Ff is
also.



If F is full and faithful, then Ff isomorphic ⇔ f isomorphic.



Let f ∈ C(X, Y) such that Ff is an isomorphism. Then ∃ inverse g′ ∈ D(FY, FX) for Ff.
Since F is full, then ∃g ∈ C(Y, X) such that g′ = Fg. But now

F(fg) = (Ff)(Fg) = 1FY.



And F(1Y) = 1FY, so since F is faithful, we have fg = 1Y. Similarly gf = 1X. So g is an
inverse for f ∈ C(X, Y), i.e. f is an isomorphism. �

. · Contravariant functors

 ..

A contravariant functor C → D is a functor Cop → D. That is:

• on objects, X 7→ FX;

• on morphisms, X
f

−→ Y 7→ FY
Ff

−→ FX;
• identities are preserved;
• F(g ◦ f) = Ff ◦ Fg.

A non-contravariant functor is sometimes referred to as a covariant functor.

. · The Hom functor

.. · 

Let C be a locally small category. We have a contravariant functor HU or C(, U):

HU : C
op → Set

X 7→ C(X,U)

X
f

Y
7→

C(X,U)
C(1,g)

g

C(Y,U) gf

Dually, we have a covariant functor HU or C(U,):

HU : C → Set

X 7→ C(U,X)

X
f

Y
7→

C(U,X)
C(f,1)

g

C(U, Y) fg

These are known as representables.

.. ·  Hom 

Again, take C locally small. Then we have a functor

H : C
op × C → Set

(X, Y) 7→ C(X, Y)

(X, Y)
(f,g)

(X′, Y′)
7→

C(X, Y)
C(f,g)

h

C(X′, Y′) ghf

where f : X → X′ ∈ Cop and g : Y → Y′ ∈ C.



. · Natural transformations

 ..

Let F, G : C → D be functors. A natural transformation α : F → G is a collection of
morphisms (known as components)

{ αX : FX → GX | X ∈ C },

such that, ∀f : X → Y ∈ C,

FX
αX

Ff

GX

Gf

FY αY
GY

commutes (the naturality condition).

L E C T U R E 5 · 2 1 / 1 0 / 0 2

 ..

Given categories C and D, we define the (larger) category [C,D] where:

• objects are functors F : C → D;
• morphisms are natural transformations α : F → G,

such that:

• identities are natural transformations 1F : F → F (for any F : C → D with components

FX
1FX

−→ FX;
• for composition, given F

α
−→G

β
−→H, then β ◦ α is the natural transformation with compo-

nents

(β ◦ α)X : FX
βX◦αX

−−−→ HX.

C

F

G

H

D

α

β

So, for example, [C,D](F, G) is a collection of natural transformations F → G.

 ..

A natural isomorphism α : F → G is an isomorphism in the functor category; i.e. there
exists β : G → F such that α◦β = 1G and β◦α = 1F. Note that two natural transformations
are equal iff all their components are.

 ..

α : F → G is a natural isomorphism iff each component αX : FX → GX is an isomorphism
in D.



Suppose α is a natural isomorphism, and let β be its inverse. Then

α ◦ β = 1G ⇒ (α ◦ β)X = 1GX ⇒ αX ◦ βX = 1GX



and
β ◦ α = 1F ⇒ (β ◦ α)X = 1FX ⇒ βX ◦ αX = 1FX.

So βX is an inverse for αX for each X ∈ C. Thus each component is an isomorphism in D.

Conversely, if each component αX is an isomorphism, then let βX be the corresponding
inverses for each X ∈ C. Now, given f ∈ C(X, Y), we have that

FX
αX

Ff

GX

Gf

FY αY
GY

commutes; i.e. (Gf) ◦ αX = αY ◦ (Ff). But now:–

βY ◦ (Gf) ◦ αX ◦ βX = βY ◦ αY ◦ (Ff) ◦ βX
so βY ◦ (Gf) ◦ 1GX = 1FY ◦ (Ff) ◦ βX

so βY ◦ (Gf) = (Ff) ◦ βX;

hence

GX
βX

Gf

FX

Ff

GY
βY

FY

commutes; so we can legitimately define the natural transformation β with components
βX. And clearly β is an inverse for α, so α is a natural isomorphism. �

We can prove similar results that tell us that α is epic/monic iff all its components are.

. · The -category Cat

 ..

We define “horizontal composition” of natural transformations. We have seen “vertical
composition” already:

C

F

G

H

D

α

β

= C

F

H

D.β◦α

But we can also compose:

C

F

G

D

H

K

Eα β = C

HF

KG

E.β∗α

We define (β ∗ α)X : HFX → KGX by

HFX
HαX

−−→ HGX
βGX

−→ KGX



or

HFX
βFX

−→ KFX
KαX

−→ KGX.

By the naturality of β, these definitions are equivalent:

HFX
βFX

HαX

KFX

KαX

HGX
βGX

KGX

so we can define
(β ∗ α)X = βGX ◦ HαX = KαX ◦ βFX.

We consider the following particular case:

C

F

G

D

H

H

Eα 1H 1H ∗ α : HF → HG

which we will (for convenience) write as:

C

F

G

D
H

Eα Hα : HF → HG.

Similarly we have:

C
F

D

H

K

Eβ βF : HF → KF.

 .. ( -  )

Given

C

F

G

H

D

J

K

L

E,
α(1)

α(2)

β(1)

β(2)

we have (β(2) ◦ β(1)) ∗ (α(2) ◦ α(1)) = (β(2) ∗ α(2)) ◦ (β(1) ∗ α(1)).





Consider components. We have

[(β(2) ◦ β(1)) ∗ (α(2) ◦ α(1))]X = (β(2) ◦ β(1))HX ◦ J(α(2) ◦ α(1))X

= β(2)HX ◦ β(1)HX ◦ Jα(2)X ◦ Jα(1)X

and

[(β(2) ∗ α(2)) ◦ (β(1) ∗ α(1))]X = β(2)HX ◦ Kα(2)X ◦ β(1)GX ◦ Jα(1)X .

So it is sufficient to prove that Kα(2)X ◦ β(1)GX = β(1)HX ◦ Jα(2)X . But we have that

JGX
β
(1)

GX

Jα
(2)

X

KGX

Kα
(2)

X

JHX
β
(1)

HX

KHX

commutes (by the naturality of β(1)), and so we are done. �

 ..

We can now define the -category Cat, consisting of:

• objects, morphisms and two-cells;
• composition of morphisms;
• horizontal and vertical composition of -cells;
• axioms - unit, associativity and middle- interchange; “any two ways of composing are the

same”.

 ..

Given categories C and D, an equivalence consists of:

• functors C
F

−→ D, D
G

−→ C;
• natural isomorphisms GF α

1C, FG
β
1D.

We call β the inverse up to isomorphism or the pseudo-inverse of α.

 ..

A functor F : C → D is essentially surjective on objects iff ∀ Y ∈ D, ∃ X ∈ C such that
FX ∼= Y ∈ D.

 ..

F is an equivalence of categories iff it is essentially surjective and full and faithful.



Omitted. �



 · Representability

. · The Yoneda Embedding

Recall that for each A ∈ C, we have the functor HA : Cop → Set. So we have an assignation
A 7→ HA. We can extend this to a functor, known as the Yoneda embedding:–

H• : C → [Cop, Set]

A 7→ HA

(f : A → B) 7→ (Hf : HA → HB),

where Hf is the natural transformation with components

(Hf)X : HAX → HBX

i.e. C(X, A) → C(X, B)

h 7→ f ◦ h.

We need to check that this is a well-defined natural transformation, i.e. that

C(Y, A)
(Hf)Y=f◦

HAg= ◦g

C(Y, B)

HBg= ◦g

C(X, A)
(Hf)X=f◦

C(X, B)

commutes. But along the two legs we just have:–

h f ◦ h

(f ◦ h) ◦ g

and

h

h ◦ g f ◦ (h ◦ g)

so the naturality condition just says that composition is associative.

L E C T U R E 6 · 2 3 / 1 0 / 0 2

. · Representable Functors

 ..

A functor F : Cop → Set is representable if it is naturally isomorphic to HA for some A ∈ C,

and a representation for F is an objectA ∈ C together with a natural isomorphism α : HA →
F.

Dually, a functor F : C → Set is representable if F ∼= HA for some A ∈ C, and a represen-
tation for F is an object A with a natural isomorphism α : HA → F.





The naturality square says, that ∀f : V → W ∈ C,

C(W,A)
αW

HAf= ◦f

FW

Ff

C(V,A) αV
FV

commutes.

 ..

 The forgetful functor U : Gp → Set is representable. Take A = Z, and α to be the natural
transformation with components:

αG : H
ZG → UG

f 7→ f(1).

Then we can check that α is natural, and it is an isomorphism, since any homomorphism
f : Z → G is completely determined by f(1).

 ob : Cat → Set is representable. For let A be 1, the terminal category; then ob(C) ∼=
Cat(1,C) is a natural isomorphism.

Now, we can make a few suggestive observations about natural transformations α : HA → F.
Consider the naturality square

C(A,A)
αA

◦f

FA

Ff

C(V,A) αV
FV

We know this commutes; in particular, for the element 1A ∈ C(A,A), we have

αV(1A ◦ f) = Ff(αA(1A)),

so that α is in fact completely determined by αA(1A) ∈ FA. So, we would like to define a
natural transformation α : HA → F by setting α(1A) = x ∈ FA, and αV(f) = (Ff)(x). If this
is indeed a natural transformation, then we will have set up a bijection between FA and the
natural transformations HA → F. Hence we get . . .

. · The Yoneda Lemma

 .. ( )

Let C be a locally small category, F : Cop → Set. Then there is an isomorphism

FA ∼= [Cop, Set](HA, F),



which is natural in A and F; i.e.

FB

Ff

[Cop, Set](HB, F)

◦Hf

FA [Cop, Set](HA, F)

and

FA

θA

[Cop, Set](HA, F)

θ◦

GA [Cop, Set](HA, G)

commute, for all f : A → B and for all θ : F → G respectively.



 Given x ∈ FA, we define x̂ ∈ [Cop, Set](HA, F) by components:

X̂V : C(V,A) → FV

f 7→ Ff(x)

We must check the naturality of x̂; given g : W → V, we need

C(V,A)
x̂V

◦g

FV

Fg

C(W,A)
x̂W

FW

to commute. On elements, we have

f Ff(x)

Fg
(
Ff(x)

)
and

f

f ◦ g F(f ◦ g)(x)

But Fg(Ff(x)) = F(f ◦ g)(x) by the (contravariant) functoriality of F, so the square com-

mutes as required.

 Given α ∈ [Cop, Set](HA, F), we define α̂ ∈ FA by

α̂ = αA(1A).

 We check (̂̂) = (). Given x ∈ FA,

̂̂x = x̂A(1A) = F(1A)(x)

= 1FA(x)

= x.

Given α ∈ [Cop, Set](HA, F), ̂̂α is given by components

̂̂α : C(V,A) → FV

f 7→ Ff(α̂) = Ff(αA(1A)).

So we need only check that αV(f) = Ff(αA(1A)). We have the following naturality square



for α:
C(A,A)

αA

◦f

FA

Ff

C(V,A) αV
FV

so on the element 1A ∈ C(A,A), we have αV(1A ◦ f) = Ff(αA(1A)), as required.

 We check naturality in A, i.e. that given any B
f

−→ A,

FA ̂

Ff

[Cop, Set](HA, F)

◦Hf

FB ̂
[Cop, Set](HB, F)

commutes. On elements, we have:

x x̂

x̂ ◦ Hf

and

x

Ff(x) F̂f(x).

Now, the former has components

C(V, B)
(Hf)V

C(V,A)
x̂V

FV
g f ◦ g F(f ◦ g)(x),

and the latter

C(V, B)
F̂f(x)V

FV
g Fg ◦ Ff(x).

But (Fg ◦ Ff)(x) = F(f ◦ g)(x) by the functoriality of F; so the naturality square commutes
as required.

 Finally, we must check the naturality in F; given a natural transformation θ : F → G, we
show that

FA

θA

[Cop, Set](HA, F)

θ◦

GA [Cop, Set](HA, G)



commutes. We have

x x̂

θ ◦ x̂

and

x

θA(x) θ̂A(x)

with respective components

C(V,A)→ GA
f7→ θV ◦ Ff(x)

and
C(V,A)→ GA

f 7→ Gf ◦ θA(x)

But these two are equal by the naturality of θ; so the naturality square commutes as re-
quired. �

Dually, for F : C Set, we have

FA ∼= [C, Set](HA, F).

L E C T U R E 7 · 2 5 / 1 0 / 0 2

 ..

The Yoneda embedding is full & faithful.



We need to show that C(A, B)
H•

−→ [Cop, Set](HA, HB) is an isomorphism. By the Yoneda
lemma, with F = HB, we have

HB(A) ∼= [Cop, Set](HA, HB).

So we just need to check that H• is the same isomorphism as that given by the Yoneda

lemma; i.e. that f̂ = Hf or Ĥf = f. But

Ĥf = (Hf)A(1A) = f. �

Note that this shows that, given f, g : A → B, then Hf = Hg ⇒ f = g. Also, given HA
h

−→ HB,

there exists f : A → B such that Hf = h.

 ..

A ∼= B ∈ C implies C(X, A) ∼= C(X, B) and C(A, X) ∼= C(B, X), each isomorphism being
natural in X.



H• is full and faithful, so A ∼= B ⇔ HA
∼= HB, so C(X, A) ∼= C(X, B) naturally in X.

Similarly for the dual statement. �

. · Parametrised representability

Consider F : Cop × A → Set. For all A ∈ A, we get

F(, A) : C
op → Set

X 7→ F(X, A).

Suppose each F(, A) has a given representation, i.e.

• an object UA;



• a natural isomorphism αA : C(, UA) → F(, A).

So we have an assignation A 7→ UA. Can we extend it to a functor? And are the αA the
components of a natural transformation?

 ..

Given a functor F : Cop ×A → Set such that each F(, A) : Cop → Set has a representation

αA : C(, UA) → F(, A),

then there is a unique way to extend A 7→ UA to a functor U : A → C such that the αA are
components of a natural transformation H• ◦ U → F.



First we construct U on morphisms; i.e. given f : A → B, we seek Uf : UA → UB. In order
to satisfy the naturality condition on α, we need

C(, UA)
αA F(, A)

F(,f)

C(, UB) αB
F(, B)

to commute.

Since the horizontal morphisms are isomorphisms, we get a unique morphism on the left
HUA

→ HUB
making the diagram commute. Now, the Yoneda embedding is full and faith-

ful, so there exists a unique morphism UA → UB inducing it. Call this Uf. It only remains
to check that U is functorial; it will make α a natural transformation by construction.

 CheckU(1A) = 1UA. Note thatU(1A) is the unique morphism making the naturality square
commute, so it suffices to check that 1UA makes the square commute.
We have

C(, UA)
αA

1UA◦

F(, A)

F(,1A)

C(, UA) αA
F(, A)

which commutes as required.

 We check U(g ◦ f) = Ug ◦ Uf given A
f

−→ B
g

−→ C. Consider

C(, UA)
αA

HUf

F(, A)

F(,f)

C(, UB)
αB

HUg

F(, B)

F(,g)

C(, UC) αC
F(, C)



Each square commutes, so the outside commutes. Now, the composite on the RHS is
F(, g ◦ f), and by definition it induces a unique map HU(g◦f) on the left such that the
diagram commutes. So we must have

HU(g◦f) = HUg ◦ HUf

= HUg◦Uf,

by functorality. But the Yoneda embedding is full and faithful, so we have U(g ◦ f) =
Ug ◦ Uf as required. �

 ..

A Cartesian closed category is a category C equipped with:

• a terminal object T;
• binary objects;
• function spaces.

In fact, in the light of the above results on representability, we can also characterise a Cartesian
closed category as containing:

• a representation for the functor F : X 7→ 1, since 1 ∼= C(X, T) for T a terminal object;
• representations for the functors FA,B : X → C(X, A) × C(X, B), since C(X, A) × C(X, B) ∼=

C(X, A × B) naturally in X;
• representations for the functors FB,C : X → C(X×B, C), since C(X×B, C) ∼= C(X, CB) naturally

in X.

We can do even better; using the parametrised representability result, we can:

• from the functor F : (X, (A, B)) 7→ C(X, A)×C(X, B), construct the functorU : (A, B) 7→ A×B;
• from the functor F : (X, (B, C)) 7→ C(X × B, C) construct the functor U : (B, C) 7→ CB.

L E C T U R E 8 · 2 5 / 1 0 / 0 2

 · Limits & colimits

. · Introduction

Consider any drawable diagram contained within some category D; for example

• • • •

Then a limit over this diagram is a universal cone:

.. · 

A cone over a diagram consists of:

• a vertex - an object in D;
• projections - a morphism from the vertex to each object of the diagram,

such that all the resulting triangles commute:

•

• • • •



.. ·    

Informally, something is universal with respect to a property if any other thing with that prop-
erty factors through it uniquely. A limit is a universal cone over a diagram; that is, a cone such
that any other cone factors through it uniquely. For example:

L

• • • •

s.t. given Y with
Y

ϕ
L

• • • •

there exists unique ϕ such that all the triangles commute. As before, the limit is unique up to
unique isomorphism.

.. ·   d

Let I be a small category (I is a generalisation of our “drawable diagram”), and let D be a
functor I → D. Then we have the cone over D:

• a vertex L ∈ D;
• for each object I ∈ I, a morphism kI : L → DI

such that, for all u : I → I′ ∈ I,

L
kI kI′

DI
Du

DI′

commutes. We write (L
kX

−→ DI)I∈I.

A limit is a universal cone, and the universal property says: given a cone (Y
pX

−→ DI)I∈I, there
exists a unique morphism f : Y → L such that “all triangles commute”, i.e., for all I ∈ I,

Y
f

pI

L

kI

DI

commutes.

. · Some specific limits

.. · 

A product is a limit of shape I with I discrete. So, for example, we have

L

DI DI′ DI′′ DI′′′

our cone, where DI, · · · ∈ obD. The universal property says, given any other cone from L′,
say, then

L′ L

DI DI′ DI′′ DI′′′



has a unique morphism L′ → L such that every triangle commutes. We write

∏

I∈I

DI
pI

−→ DI.

We have already seen the product over the empty set, i.e. a terminal object, and the product
over {•, •}; that is, a binary product.

.. · 

An equaliser is a limit of shape • • . A diagram of this shape in D is of the form

A
f

g
B.

A cone over this diagram is

E

e m

A
f

g
B.

Note that m = fe = ge as all triangles commute; so in fact we can rewrite this more simply as

E
e

A
f

g
B such that fe = ge.

An equaliser is the universal such; so given any C
h

A
f

g
B such that fh = gh,

then there exists a unique factorisation:

E
e

A
f

g
B

C

∃!h
h

such that h = eh.

.. · 

A pullback is a limit of shape

•

• •

A diagram of this shape in D is

W

g

U
f

V.



A cone over this diagram is

P
g′

a

W

f′

U
f

V

commuting (really, there is a projection c : Z → V, but we must have c = fa = gb). A
pullback is the universal such; so given any commutative square

Z
b

a

W

g

U
f

V,

we have

Z
∃!h

b

a P
f′

g′

W

g

U
f

V

a unique h such that g′h = a, and f′h = b. We say that g′ is a pullback for g over f, and that
f′ is a pullback for f over g.

L E C T U R E 9 · 3 0 / 1 0 / 0 2

. · Limits — formally

 ..

Given Y ∈ D, we define the constant functor ∆Y:

∆Y : I → D

I 7→ Y

f 7→ 1Y.

From this we get a functor:

∆ : D → [I,D]

Y 7→ ∆Y

X
f

Y
7→

∆X
∆f

∆Y

with every component of ∆f being f.



 ..

A limit for D : I → D is a representation for the functor

[I,D](∆ , D) : D
op → Set.

That is, an object L ∈ D and a natural isomorphism α with

HL

α
∼= [I,D](∆ , D).

We write L = lim←I D =
∫
IDI.

So we have an isomorphism

D(,
∫
IDI)

∼= [I,D](∆ , D).

Let us make explicit what the functor on the right hand side does; call it F. Then:

F : D
op → Set

Y 7→ [I,D](∆Y,D)

Y
f

X
7→

[I,D](∆X,D)
Ff

θ

[I,D](∆Y,D) θ ◦ ∆f.

Now, what does a natural transform ∆Y
k

−→ D look like? We have:

• for each I ∈ I, a morphism

kI : (∆Y)I → DI

Y → DI;

• for all u : I → I′ in I,

(∆Y)I

(∆Y)u

DI

Du

(∆Y)I′ DI′

commutes by naturality; i.e.

Y
kI kI′

DI
Du

DI′

commutes.

So such a natural transformation is precisely a cone overDwith Y as the vertex. Now, consider
a representation as above, and let α be its natural isomorphism. Then we have

αY : D(Y, L) → [I,D](∆Y,D)

f 7→ Ff(αL1L);

i.e., the natural transformation is completely determined by αL1L.

Now, we have a cone given by αL1L = (kI)I∈I, say. So given any other Y and Y
f

−→L on the left



hand side, we have Ff(αL1L) with components kI◦f; hence we have a bijective correspondence

morphisms

Y
f

−→ L
↔

cones over D
(kI ◦ f)I∈I

i.e., starting on the right hand side, given any cone (pI)I∈I, there exists a unique morphism
f : Y → L such that pI = kI ◦ f for all I; thus (kI)I∈I is a universal cone over D.

Note that any isomorphism on the left hand side will give rise to a universal cone.

 ..

If a limit exists for all functors from D : I → D, we say D has all limits of shape I.

If D has all limits of shape I for all small/finite categories I, we say D has all small/finite
limits or that D is (finitely) complete.

. · Limits in Set

 ..

Set has all small limits.



We seek a limit for F : I → Set. We define L, a set of tuples ⊆
∏

I∈I

FI by taking all tuples
(xI)I∈I satisfying:

• ∀I ∈ I, xI ∈ FI;
• ∀I

u
−→ I′, Fu(xI) = xI′ .

We have projections

L
pI
FI

(xI)I∈I xI

for each I ∈ I. We now show that this is a minimal cone:

 It is a cone; we need to show, for all u : I → I′, that

FI
Fu

L
pIpI′

FI′

commutes. On elements we have

xI

(xI)I∈I

Fu(xI)

and

(xI)I∈I

xI′

so we are done here, since Fu(xI) = xI′ .

 It is universal: we show that every cone factors through it uniquely. So consider a cone

(Z
qI

−→ FI)I∈I; so

FI
Fu

Z
qIqI′

FI′



commutes; that is, for all y ∈ Z, Fu(qI(y)) = qI′(y). We seek a unique factorisation making
the following diagram commute for all I:

Z

qI

h

FI

L

pI

On elements, this would give

y

qI(y)

h(y)

So, writing h(y) = (aI)I∈I, we must have aI = qI(y). So define h by h(y) = (qI(y))I∈I. It
remains to check that h(y) ∈ L, so that for all u : I → I′, Fu(aI) = aI′ ; i.e.

Fu(qI(y)) = qI′(y),

which follows since (Z
qI

−→ FI)I∈I is a cone. �

L E C T U R E 10 · 0 1 / 1 1 / 0 2

. · Limits in other categories

 ..

If a category D has all small products and equalisers, then D has all small limits.



Given a diagram D : I → D, I small, we seek a limit in D. The idea of the proof is to

construct it as an equaliser E e P
f

g
Q, where P andQ are certain products over theDI.

 Put
P =

∏

I∈I

DI

with projections P
pI
DI; this is a small product, so exists.

 Put
Q =

∏

u : I→J∈I

DJ

with projections Q
qU

DJ; again, a small product, so exists.

 Induce f by the universal property of Q as follows: for all u : I → J, we have pJ : P → DJ
inducing a unique f : P Q such that ∀u,

qU ◦ f = pJ. ()



P

DJ

pJ

P Q
!f

Q

DJ

qU

 Induce g by the universal property of product Q (differently) as follows: for all u : I J,
we have Du ◦ pI : P → DJ inducing a unique g : P Q such that, for all u,

qu ◦ g = Du ◦ pI. ()

DI DJ
Du

P

DI

pI

P Q
!g

Q

DJ

qU

 Take equaliser E e P
f

g
Q; so in particular

fe = ge. ()

Claim that (E
pI◦e

DI)I∈I gives a universal cone over D.

 First we show it is a cone; i.e. for all u : I → J,

Du ◦ pI ◦ e = pJ ◦ e ()

This is true, since

Du ◦ pi ◦ e = qu ◦ g ◦ e by ()

= qu ◦ f ◦ e by ()

= pJ ◦ e by ()

It remains to show that this cone is universal; i.e. given any cone (V
vI DI)I∈I, we seek a

unique x : V E such that for all I ∈ I, pI ◦ e ◦ x = vI.

E

DI

pI◦e

V

E

x

V

DI

vI



We will construct a diagram

V

x

vI

k
m

E
e

P
f

g

pI

Q

DI

So suppose we are given such a cone (V
vI DI)I∈I. So for all u : I → J,

Du ◦ vI = vJ. ()

 Induce k : V → P by the universal property of P: for all I ∈ I, we have V
vI DI inducing a

unique k : V → P such that, for all I,

pI ◦ k = vI. ()

 Induce x : V → E by the universal property of the equaliser; in order to do this, we must
first show that fk = gk. Now, for all u : I → J, we have V vJ

DJ inducing a unique m : V →
Q such that

qu ◦ m = vJ. ()

But fk and gk both satisfy this condition, since, for all u,

qu ◦ fk = pJ ◦ k by ()

= vJ by ()

and

qu ◦ gk = Du ◦ pI ◦ k by ()

= Du ◦ vI by ()

= vJ by ()

Hence fk = gk; so we can induce a unique x : V → E such that

e ◦ x = k. ()

 We now check that x is a factorisation for the cones. So given I ∈ I,

pI ◦ e ◦ x = pI ◦ k by ()

= vI by ()

so we have the desired result.

 Finally, we show that x is unique with this property; suppose we have a morphism y : V →
E such that, for all I,

pI ◦ e ◦ y = vI. ()

Now by construction x is unique such that ex = k, so we seek to show also ey = k. By
construction, k is unique such that for all I, pI ◦ k = vI (by ()); but () says that ey also
satisfies this. Hence ey = k, so y = x and we are done. �



. · Colimits

 ..

A colimit for a diagram D : I → D is a representation

D(
∫ IDI,) ∼= [I,D](D,∆).

So a colimit for D : I → D is essentially a limit of Dop : I
op → Dop. If D has all small colimits,

we say it is cocomplete.

L E C T U R E 11 · 0 4 / 1 1 / 0 2

. · Parametrised limits

Recall two results:

 Given a diagram D : I → D, a limit for D is a representation

D(,
∫
IDI)

∼= [I,D](∆ , D)

 Given a functor X : Cop × A → Set such that each X(, A) has a representation

αA : C(, UA) ∼= X(, A)

then there is a unique way to extend A 7→ UA to a functor such that

C(Y,UA) ∼= X(Y, A)

naturally in Y and A, with components of the implied natural transformation given by αA.

 ..

Define F : I × A → D such that each F(, A) : I → D has a specified limit in D:

D(,
∫
I F(I, A))

∼= [I,D](∆ , F(, A)).

Then there is a unique way to extend A 7→
∫
I F(I, A) to a functor A → D such that

D(Y,
∫
I F(I, A))

∼= [I,D](∆Y, F(, A))

naturally in Y and A.



Simple application of parametrised representability. �

 ..

Suppose D has chosen limits of shape I. Consider the evaluation functor

E : I × [I,D] → D

(I, D) 7→ DI

Then E(, D) has a limit for each D,
∫
IDI. By parametrised limits, we get a functor

∫
I : [I,D] → D

D 7→
∫
IDI

such that D(Y,
∫
IDI)

∼= [I,D](∆Y,D) naturally in Y and D.

 ..

We can restate the definition of a limit to get

D(Y,
∫
IDI)

∼=
∫
I D(Y,DI).



What does this mean?

 The right hand side is the limit of the functor

D(Y,D) : I → Set

I 7→ D(Y,DI)

I
u

I′
7→

D(Y,DI)
Du◦

D(Y,DI′)

Set is complete, so this certainly has a limit. What does
∫
I D(Y,DI) look like? Well, it is all

tuples (αI)I∈I such that
∀I, αI ∈ D(Y,DI)

and
∀u : I → I′, Du ◦ αI = αI′ .

So this is precisely a cone over D; i.e.
∫
I D(Y,DI) = [I,D](∆Y,D)

 Observe that by parametrised limits, we have a functor

Y 7→
∫
I D(Y,DI)

So ∫
I D(Y,DI) = [I,D](∆Y,D) ∼= D(Y,

∫
DI)

naturally in Y and D.

. · Preservation, reflection and creation of limits

Let I
D

D
F

E. We can consider limits over D and limits over FD.

 ..

Suppose we have a limit cone for D

(
∫
IDI

kI DI)I∈I

We say F preserves this limit if

(F
∫
IDI

FkI FDI)I∈I

is a limit cone for FD in E. Note that it must preserve projections.

 ..

Suppose FD : I → E has a limit cone. We say F reflects this limit if any cone that goes to a
limit cone was already a limit cone itself. That is, given a cone

(Z
fI
DI)I∈I

such that (FZ
FfI

FDI)I∈I is a limit cone for FD, then (Z
fI
DI)I∈I is also a limit cone.



 ..

Suppose FD : I → E has a limit cone. We say F creates this limit if there exists a cone (Z
fI
DI)I∈I such that (FZ

FfI
FDI)I∈I is a limit cone for FD, and additionally F reflects limits.

That is, given a limit for FD, there is a unique-up-to-isomorphism lift to a limit for D.

L E C T U R E 12 · 0 6 / 1 1 / 0 2

. · Examples of preservation, reflection and creation

 ..

Representable functors preserve limits.



We consider

I
D

C
HU

Set

I DI C(U,DI)

Given a limit cone for D,

(
∫
IDI

kI DI)I∈I,

we need to show that

C(U,
∫
IDI)

kI◦
C(U,DI)

is a limit cone for C(U,D). Certainly, C(U,
∫
IDI)

∼=
∫
I C(U,DI). And for projections

C(U,
∫
IDI)

∼= [I,C](∆U,D) =
∫
I C(U,DI)

f 7→ kI ◦ f

so we are done. Dually, we have

C(
∫ IDI, U) ∼=

∫
I C(DI, U)

so HU takes a colimit in C to a limit in Set; and hence takes a limit in Cop to a limit in Set.

Thus HU also preserves limits. �

 ..

A full and faithful functor preserves limits.



Consider I
D

C
F

E, with F full and faithful, and let (Z
fI
DI)I∈I be a cone such that F of

it is a limit cone for FD. We need to show that this cone itself is a limit.

Now, given any other cone (W
gI
DI)I∈I, we seek a unique h such that gI = fI ◦ h for all

I ∈ I. So

 Since F(Z
fI
DI) is a limit, there exists unique m such that FgI = Ffi ◦ m for all I ∈ I.

 Since F is full, there exists h : W → Z such that Fh = m.

 Check commuting condition: we know that, for all I ∈ I, FgI = Ffi◦Fh, i.e. FgI = F(fi◦h).
Hence fI ◦ h = gI since F is faithful.

 Suppose there is a k such that for all I ∈ I, fI ◦ k = gI. Then FfI ◦ Fk = FgI for all I; but
we have that m is the unique morphism such that Ffi ◦ m = FgI; hence Fk = m = Fh, so
k = h (as F faithful), and we are done. �



 · Ends and coends

. · Dinaturality

 ..

Given functors F, G : Cop × C D, a dinatural transform α : F G consists of, for each
U ∈ C, a component

αU : F(U,U) G(U,U)

such that for all f : U → V,

F(U,U)
αU G(U,U)

G(1,f)

F(U,V)

F(f,1)

F(1,f)

G(U,V)

F(V,V) αV
G(V,V)

G(f,1)

commutes.

Note that there is no sensible composition of dinatural transformation, and hence Dinat(F, G)
is just a set.

. · Ends and coends

Recall that a limit for D : I D is a representation for [I,D](∆ , D) = Nat(∆ , D), such that

D(Y,
∫
IDI)

∼= Nat(∆Y,D) naturally in Y.

 ..

An end for F : I
op × I D is a representation for the functor

Dinat(∆ , F) : D
op Set

so that
D(Y,

∫
I F(I, I))

∼= Dinat(∆Y, F) naturally in Y.

Dually, a coend for F is just a representation for Dinat(F,∆) : D → Set so

D(
∫ I F(I, I), Y) ∼= Nat(F,∆Y) naturally in Y.



Ends are in fact just a special sort of limit; any end can be expressed as a limit.

. · Ends in Set

Recall a limit in Set for D : I Set is given by

{ (xI)I∈I | ∀I, xi ∈ DI,∀u : I I′, Du(xI) = xI′ }.

An end in Set for X : I
op × I Set is given by

{ (xI)I∈I | ∀I, xi ∈ X(I, I),∀f : I I′, X(1, f)(xI) = X(f, 1)(xI′) }.



. · Key observations

 ..

Parametric results follow, so we can use ends in Set to restate the definition of (co)ends.
Consider

XV : I
op × I Set

(I, J) D(V, F(I, J))

We have an end in Set
∫
I XV(I, I)

∼=
∫
I D(V, F(I, I)) = Dinat(∆V, F)

So we get:

End: D(V,
∫
I F(I, I))

∼=
∫
I D(V, F(I, I))

Coend: D(
∫ I F(I, I), V) ∼=

∫
I D(F(I, I), V)

 ..

The set [C,D](F, G) is an end in Set. For consider

X : C
op × C Set

(U,V) D(FU,GV)

Then
∫
U X(U,U) =

∫
U D(FU,GI) is just

{ (αU)U∈C | αU : FU GU and ∀f : U U′, X(1, f)(αU) = X(f, 1)(αU′) }.

But now
Gf ◦ αU = X(1, f)(αU) = X(f, 1)(αU′) = αU′ ◦ Ff

so this is just a naturality condition on the αU’s; and hence we have
∫
U X(U,U) =

∫
U D(FU,GI) = [C,D](F, G).

L E C T U R E 13 · 0 8 / 1 1 / 0 2

 ..

We can restate the Yoneda lemma. Recall that if X : C
op Set, we have

X(U) ∼= [Cop, Set](HU, X)
∼=

∫
V[HU(V), X(V)] where [,] means morphisms in Set

∼=
∫
V[C(V,U), X(V)]

. · Applications

Consider a functor F : I → [C,D]. What does a limit cone for this look like? We have

(L
αI FI)I∈I

with L a functor and αI a natural transformation L → FIwith components (αI)C : LC FI(C).

Now, given C ∈ C, we can evaluate the whole cone at C:

(LC
αIC FI(C))I∈I



Now if this is a limit cone in D for

FC : I D

I FI(C)

then we say that the limit for F is “computed pointwise”.

 ..

Suppose F : I → [C,D] is such that for all C ∈ C,

FC : I D

I FI(C)

has a limit cone (∫
I FI(C)

(pC)I
FI(C)

)
I∈I

.

Then F has a limit (∫
I FI

kI FI
)
I∈I

computed pointwise; i.e.
(∫

I FI
)
(C) =

∫
I FI(C)

and (kI)C = (pC)I



We have a functor

F : I × C D

(I, C) FI(C)

and each F(, C) = FC has a limit, so by parametrized limits, we get a functor

C
∫
I FI(C)

Call it L, and claim this gives the limit as required. So we need to show

[C,D](Y, L) ∼= [I, [C,D]](∆Y, F)

naturally in Y, and to check projections.

Now,

[C,D](Y, L) ∼=
∫
C D(YC, LC) set of nat trans is end in Set

=
∫
C D(YC,

∫
I F(I, C)) rewriting LC

∼=
∫
C[I,D](∆(YC), F(, C)) by definition of limit

∼= [C, [I,D]](∆(Y•), F(, •)) end in Set is set of nat trans
∼= [I, [C,D]](∆Y, F)

where the last isomorphism holds since

[C, [I,D]] ∼= [C × I,D] ∼= [I, [C,D]].

Note that each line is natural in Y; and the third line gives the projections as required. �

We have the same result for colimits, ends and coends. However, it may be possible for non-
pointwise limits to exist if not all the FC’s have limits.



 ..

The Yoneda embedding preserves limits.



Consider I
D

C
H•

[Cop, Set]. Suppose we have a limit cone for D,

(
∫
IDI

kI DI)I∈I

We need to show that (C(,
∫
IDI)

HkI
C(, DI))I∈I. is a limit for H• ◦ D. By the previous

result, it suffices to do this pointwise; so for all C ∈ C, we need that

(C(C
∫
IDI)

kI◦

C(C,DI))I∈I

is a limit for I C(C,DI), i.e. HC◦D. But we have already shown this, since representables
preserve limits, and the given cone is just HC of (

∫
IDI kI

DI)I∈I. �

L E C T U R E 14 · 1 1 / 1 1 / 0 2

 .. ()

Suppose F : I × J D is such that FJ : I D has a limit
∫
I F(I, J) for all J ∈ J. Then we

have a functor ∫
I F(I,) : J

∫
I F(I, J)

such that ∫
J

∫
I F(I, J)

∼=
∫
(I,J) F(I, J)

in the sense that if one exists, then so does the other, and they are isomorphic with corre-
sponding limit cones.



The right-hand side is a representation of [I × J,D](∆ , F); the left-hand side is a repre-
sentation of [J,D](∆ ,

∫
I F(I,)). Now,

[I × J,D](∆V, F) ∼= [I, [J,D]](∆V, F(,))
∼=

∫
I[J,D](∆V, F(I,))

= [J,D](∆V,
∫
I F(I,)).

Hence representations give the result. �

 ..

Suppose F : I × J → D such that
∫
I F(I,) : J → D and

∫
J F(, J) : I → D exist. Then

∫
J

∫
I F(I, J)

∼=
∫
I

∫
J F(I, J)

in the same sense as above.



Both are isomorphic to
∫
(I,J) F(I, J). �

Note that also we have colimits, ends and coends commuting with themselves; also (co)ends
commute with (co)limits.

 .. ()

For X : C
op → Set, we have

X(U) ∼=
∫W

C(U,W) × X(W),



naturally in U.



We aim to show that

[Cop, Set](X, Y) ∼= [Cop, Set](
∫W

C(,W) × X(W), Y)

and deduce result by above. So:

RHS ∼=
∫
U[

∫W
C(U,W) × X(W), Y(U)] set of nat trans is end in Set

∼=
∫
U

∫
W[C(U,W) × X(W), Y(U)] restate definition of colimit

∼=
∫
W

∫
U[C(U,W) × X(W), Y(U)] Fubini interchange

∼=
∫
W

∫
U[X(W), [C(U,W), Y(U)]] definition of function space

∼=
∫
W[X(W),

∫
U[C(U,W), Y(U)]] restate definition of end

∼=
∫
W[X(W), Y(W)] Yoneda restated

∼= [Cop, Set](X, Y) end in Set is set of nat trans

Hence, since the Yoneda embedding is full and faithful, we have the desired natural iso-
morphism

X ∼=
∫W

C(,W) × X(W). �

 ..

Every presheaf is a colimit of representables.



By previous result, we have

XU ∼=
∫W∈C

C(U,W) × X(W)

The idea of the proof is that this is almost a colimit of representables. We would like to say

that it is
∫W∈C,x∈X(W)

C(U,W). Can we do this in any way?

We can, by defining the Grothendieck Fibration. Given X : C
op Set, we define a category

G(X) with

• objects being pairs (W, x),W ∈ C, x ∈ XW.
• morphisms (W, x) (W′, x′) being f : W W′ such that Xf(x′) = x.

There is a forgetful functor

P : G(X) C

(W, x) W

So we get G(X) P
C

H•

[Cop, Set], and

X(U) ∼=
∫ α∈G(X)

C(U, P(α))

Hence we get X ∼=
∫ α∈G(X)HP(α), a colimit of representables. �

 ..

A presheaf category [Cop, Set] is Cartesian closed.





Limits and colimits are computed pointwise, so we get the terminal object and binary prod-
ucts from those in Set. So we need to find function spaces. So, given Y, Z ∈ [Cop, Set], we
seek ZY ∈ [Cop, Set] such that

[Cop, Set](X, ZY) ∼= [Cop, Set](X × Y, Z)

naturally in X and Y. So put

ZY(U) = [Cop, Set](HU × Y, Z)
∼=

∫
V[C(V,U) × Y(V), Z(V)] end in Set, products ptwise.

Then

[Cop, Set](X, ZY) ∼=
∫
U[X(U), Z

Y(U)] end in Set

∼=
∫
U[X(U),

∫
V[C(V,U) × Y(V), Z(V)]] write in definition

∼=
∫
U

∫
V[X(U), [C(V,U) × Y(V), Z(V)]] restate defn of limit

∼=
∫
V

∫
U[X(U), [C(V,U)[Y(V), Z(V)]]] c.c. of Set, Fubini

∼=
∫
V

∫
U[X(U) × C(V,U), [Y(V), Z(V)]] c.c. of Set

∼=
∫
V[

∫ U X(U) × C(V,U), [Y(V), Z(V)]] restate defn of colimit
∼=

∫
V[X(V), [Y(V), Z(V)]] Density

∼=
∫
V[X(V) × Y(V), Z(V)] c.c. of Set

∼= [Cop, Set](X × Y, Z) end in Set, products ptwise.

Thus ZY is a function space as required. �

L E C T U R E 15 · 1 3 / 1 1 / 0 2

 · Adjunctions

. · Definitions

 ..

Let F : C → D, G : D → C be functors. An adjunction F a G consists of an isomorphism

D(FX, Y) ∼= C(X,GY)

that is natural in X and Y. We say F is left adjoint to G, and G is right adjoint to F.

So, we have a correspondence

morphisms
FX Y

↔
morphisms
X GY



We write

FX
g

Y ∈ D

X
g

GY ∈ C

and
X

f
GY ∈ C

FX
f

Y ∈ D

We write () for the adjunction operation, and call it transpose. Note f = f, g = g.



What do the naturality conditions mean? Naturality in X says that, for any h : X′ X,

D(FX, Y)
()

◦Fh

C(X,GY)

◦h

D(FX′, Y)
()

C(X′, GY)

commutes. Similarly, naturality in Y says that for any k : Y Y′,

D(FX, Y)
()

k◦

C(X,GY)

Gk◦

D(FX, Y′)
()

C(X′, GY)

commutes. That is,

X′ h X
f

GY

FX′ Fh FX
f

Y
and

FX
g

Y k Y′

X
g

GY Gk GY′

f ◦ h = f ◦ Fh k ◦ g = Gk ◦ g

Now, this is actually the Yoneda lemma in disguise:

D(FX, Y) ∼= C(X,GY)

is HFX ∼= C(X,G)

and C(X,GY) ∼= D(FX, Y)

is HGY
∼= D(F , Y)

Yoneda tells us that each of these natural transforms is completely determined by where the
identity goes:

FX
1FX FX

X
ηX

GFX
and

GX
1GY GY

FGY
εY Y

Then by naturality,

g = Gg ◦ ηX
FX

1FX FX
g

Y

X
ηX

GFX
Gg

GY

and

f = εX ◦ Ff
X

f
GY

1GY GY

FX
Ff

FGY
εY Y

And in fact, the ηX, εY are components of a natural transformation.

 ..

Given F a G, we have natural transformations η and ε with components given by ηX, εY.





Check naturality. For η, given f : X X′,

X
ηX

f

GFX

GFf

X′ ηX′
GFX′

must commute. Now, we have:-

X
ηX

GFX
GFf

GFX′

FX
1FX FX

Ff
FX′

1FX′

FX′

X
f

X′
ηX′

GFX′

But we have transposed twice, and hence we have equality as required. Similarly for ε. �

 ..

Given F a G, we call η : 1C GF the unit and ε : FG 1D the counit of the adjunction.

. · Examples

 ..

Free a forgetful. For example:

 U : Gp Set has a left adjoint F a U, where F(S) gives the free group on S; so we have

Gp(FS, G) ∼= Set(S, U(G))

 U : Alg Vect which forgets the multiplicative structure; we have F a U, where F(V) is
the free algebra on V.

 U : Ring Monoid has a left adjoint

Z ◦ : M ZM = {formal finite combinations
∑

λimi, λi ∈ Z,mi ∈ M.}

 U : Ab Gp has a left adjoint “free abelianization”: GAB = G/[G,G].
 U : Algk Liek has left adjoint L 7→ U(L) = universal enveloping algebra of L.

 ..

Reflections a inclusions a coreflections. If C → D has a left adjoint, it is called a reflector
and exhibits C as a reflective subset of D.

 As above, Ab → Gp; Ab is reflective in Gp.

 {
complete metric spaces,
uniformly cts functions

}
→

{
metric spaces,

uniformly cts functions

}

has left adjoint “completion”.

 {
compact Hausdorff spaces,

uniformly cts functions

}
→

{
topological spaces,

uniformly cts functions

}

has left adjoint Stone-C̆ech compactification.



 Gp → Monoid. Gp is reflective and coreflective in Monoid, via

M {m ∈ M | m is invertible }

 ..

Closedness. Let C be a cartesian closed category. Then for all B ∈ C, we have

× B a ()B

i.e.
C(A × B, C) ∼= C(A, CB)

naturally in A and C.

 ..

Adjoints for representable functors are powers and copowers. Recall given an objectA ∈ C

and a set I, we can form the I-fold power:

AI =
∏

i∈I

A = [I, A]

and dually the I-fold copower:

I × A =
∐

i∈I

A.

By parametrised limits, we get functors:

[, A] : Set C
op

× A : Set C

Now, Set(I,C(U,A)) ∼= C(U, [I, A]) ∼= Cop([I, A], U). So [, A] a C(, A) = HA. Similarly
× A a C(A,) = HA, since Set(I,C(A,U)) ∼= C(I × A,U).

So HA has an adjoint iff C has all small powers of A iff Cop has all small copowers of A.

If C has all small powers and copowers of A, we get

C(I × A,U) ∼= C(A, [I, U])

via Set(I,C(A,U)). So I × a [I,] : C C.

L E C T U R E 16 · 1 5 / 1 1 / 0 2

. · Triangle identities

 ..

Given an adjunction F a G, then the unit η : 1 GF and the counit ε : FG 1 satisfy the
triangle identities; that is, the following diagrams commute:

GY GFGY
ηGY

GY

GY

1GY

GFGY

GY

GεY
and

FX FGFX
FηX

FX

FX

1FX

FGFX

FX

εX





GY
ηGY

GFGY
GεY GY

FGY
1FGY FGY

εY Y

GY
1GY GY

and

FX
FηX

FGFX
εX FX

X
ηX

GFX
1GFX GFX

FX
1FX FX

�

 ..

An adjunction F a G is completely determined by natural transformations

η : 1 GF

ε : FG 1

satisfying the triangle identities.



Suppose we are given such ε, η. We need to show that

D(FX, Y) ∼= C(X,GY)

naturally in X and Y. So, given f : X GY, put

f : FX
Ff

FGY
εY Y

and given g : FX Y, put

g : X
ηX

GFX
Gg

GY

We need to check naturality. For naturality in X, we need, given h : X′ X, that fh =
f ◦ Fh. Now,

fh = εY ◦ F(fh)

= (εY ◦ Ff) ◦ Fh

= f ◦ Fh.

For naturality in Y, we need, for all k : Y Y′, kg = Gk ◦ g. Now,

kg = G(kg) ◦ ηY
= Gk ◦ (Gg ◦ ηY)

= Gk ◦ g.

Now we need to check that these are inverse: given f : X GY, we need that f = f. We
have

f = FX
Ff

FGY
εY Y.

So

f = X
ηX

f

GFX
GFf

GFGY
GεY GY

GY

ηGY
1GY



Note that the left hand circuit commutes by the naturality of η, and the right hand circuit

commutes by the first triangle identity, so f = f. Similarly, given g : FX Y,

g = FX
FηX

1FX

FGFX

εFX

FGg
FGY

εY Y

FX

g

Here, the left circuit commutes by the second triangle identity, and the right circuit com-

mutes by the naturality of ε; hence g = g, as required. �



Adjunctions can be composed:

C
F1

G1

D
F2

G2

E giving C
F2F1

G1G2

E

from E(F2F1X, Y) ∼= D(F1X,G2Y) ∼= C(X,G1G2Y).

. · Adjunctions as parametrised representations

To give a left adjoint to G : D → C, it is sufficient to give, for each X ∈ C, a representation for

C(X,G) : D Set.

By parametrised representation, this extends uniquely to a functor which is the left adjoint we
are looking for. Dually, a right adjoint to F : C D is a representation for

D(F , Y) : C
op Set.

Recall “D has limits of shape I” means, for all D : I D, there exists a representation of

[I,D](∆ , D) : D
op Set

i.e., D has limits of shape I iff ∆ : D → [I,D] has a right adjoint. Dually, D has colimits of
shape I iff ∆ : D → [I,D] has a left adjoint.

. · Adjunctions as collections of initial objects

 ..

Given G : D → C and X ∈ C, we define the comma category (X ↓ G):

• objects are pairs (f, Y), X
f
GY;

• morphisms (f, Y)
h
(f′, Y′) are morphisms Y

h
Y′ such that

X
f f′

GY
Gh

GY′

commutes.

 ..

To give a left adjoint for G : D C is equivalent to giving, for all X ∈ C, an initial object
for the comma category (X ↓ G).





An initial object in (X ↓ G) is a pair (u, VX) with X u GVX such that, for all X
f
GY, there

exists a unique h : VX Y such that

X
u f

GVX
Gh

GY′

commutes. So

D(VX, Y) ∼= C(X,GY)

f 7→ Gh ◦ u

We need to check naturality in Y. So, for all g : Y Y′, we have

D(VX, Y) C(X,GY)

D(VX, Y′) C(X,GY′)

and so on elements

h Gh ◦ u

g ◦ h G(g ◦ h) ◦ u = Gg ◦ Gh ◦ u

and so this is a representation as required. �

. · Duality

We note that there are a lot of duality relations going on with adjunctions:

left adjoint right adjoint
unit counit

natural in X natural in Y
first triangle identity second triangle identity

Why is this? Consider

F a G, C
F

G
D also G a F, Cop

F

G
Dop

D(FX, Y) ∼= C(X,GY) Dop(Y, FX) ∼= Cop(GY, X)
F a G : D C G a F : Cop Dop

unit ηX : X GFX counit ηX : GFX X
counit εY : FGY Y unit εY : Y FGY



L E C T U R E 17 · 1 8 / 1 1 / 0 2

 · Adjoint functor theorems

. · Preservation

 ..

Suppose F a G : D C. Then G preserves limits, and F preserves colimits.



ConsiderD : I D with limit cone (
∫
IDI

kI DI)I∈I. We need to show that G of it is a limit
cone for GD : I C. The cone becomes

(G
∫
IDI

GkI GDI)I∈I.

We need a natural transformations C(, G
∫
IDI)

∼= [I,C](∆ , GD) with components

C(V,G
∫
IDI)

∼= [I,C](∆V,GD)

f 7→ (GkI ◦ f)I∈I

Now,

C(V,G
∫
IDI)

∼= D(FV,
∫
IDI)

∼=
∫
I D(FV,DI)

∼=
∫
I C(V,GDI)

∼= [I,C](∆V,GD).

And on projections:

f 7→ f

7→ kI ◦ f

7→ GkI ◦ f

as required; and dually for F. �

. · General adjoint functor theorem

 ..

Given a category A, a collection I ⊆ A is weakly initial if for all A ∈ A, there exists a
morphism I A for some I ∈ I.



{initial object} is a weakly initial set.

 .. (   )

Suppose we have a functor G : D C that preserves small limits, and that D is locally
small and complete. Then G has a left adjoint iff for all X ∈ C, the category (X ↓ G) has a
weakly initial set.

This last condition is known as the solution set condition.





Here is the general structure of the proof:

D locally small D complete
G preserves
small limits

(X ↓ G) locally
small

P : (X ↓ G)
D creates

small limits

(X ↓ G)
complete

(X ↓ G) has
w.i.s. iff

(X ↓ G) has
initial object

G has a left
adjoint iff for
all X, (X ↓ G)

has initial
object

GAFT

where we define P : (X ↓ G) D to be the obvious forgetful functor. So:

 

P : (X ↓ G) D creates small limits.



Let D : I (X ↓ G) be a diagram. We need to show that, if PD has a limit cone, then
there is a cone

(V
cI DI)I∈I

in (X ↓ G) such that (PV
PcI PDI)I∈I is a limit for PD in D, and that any such cone is

itself a limit for D in (X ↓ G).

 Suppose PD : I D has a limit cone, say (L
cI PDI)I∈I:

L
cI

cI′

cI′′

PDI PDI′ PDI′′

 G preserves small limits, so (GL
GcI GPDI)I∈I is a limit for GPD in C.

GL
GcI

GcI′

GcI′′

GPDI GPDI′ GPDI′′



 (DI)I∈I gives a diagram in (X ↓ G)

X

GPDI GPDI′ GPDI′′

which is precisely a cone (X GPDI)I∈I in C. Hence we induce a unique morphism
u : X GL making everything commute:

X GL

GPDI GPDI′ GPDI′′
()

 Since everything in the diagram commutes, it forms a cone over D in (X ↓ G), with

vertex V = (X u GL). Moreover, by construction is it unique such that applying P to it

gives the original cone (L
cI PDI)I∈I. So we have shown that, given a limit cone for PD

there is a unique cone in (X ↓ G) that maps to it, given by () above. It remains to show
that this cone is universal.

 Given any cone ((X
f
GY) DI)I∈I in (X ↓ G), we seek a unique factorisation (X

f
GY) V:

GY
Gh

X

f

GL

GPDI GPDI′

Applying P, we get a cone (Y PDI)I∈I in D, and since L is a limit, this induces a unique
morphism h : Y L making everything commute in D. But now, by the uniqueness of
u we have Gh ◦ f = u, since Gh ◦ f satisfies the conditions making u unique. So h is a
morphism in (X ↓ G):

GY
Gh

X

f

u GL

and so is the unique factorisation as required. So the cone () is indeed universal and P
creates limits as required. �

So now we can quickly deduce

 

For each X ∈ C, (X ↓ G) is locally small and complete.



Since D is locally small, so too is (X ↓ G). Now, let D be a diagram in (X ↓ G). Apply
P to get a diagram PD in D. This has a limit, since D is complete. And by lemma
, P creates it from a limit in (X ↓ G); i.e. D has a limit in (X ↓ G). So (X ↓ G) is
complete. �

Now, we need only prove



  (  )

If A is locally small and complete, then A has an initial object iff A has a weakly initial
set.



⇒ is clear; so we need to show ⇐. So let I be a weakly initial set in A. We need to
construct an initial object from I.

So, set P =
∏

I∈I I. This is a small product, since I is a set. Now set L to be a limit over
the diagram of all morphisms P P; this is a small limit since A is locally small.
We claim that L is initial in A. Note that L has projections

L

k k′

P P

Now:

 k = k′ since all triangles commute, and we have 1P : P P;
 for all f : P P, fk = k, since all triangles commute;
 k is monic (c.f. proof that an equaliser is monic).

We immediately have that I weakly initial ⇒ {P} weakly initial ⇒ {L} weakly initial.
So for all A ∈ A, there exists a morphism L A.

We need to show this morphism is unique. So suppose we have L
s

t
A. Consider

P

L
k

P
m

E
e

L
s

t

k

A

where E e L is an equaliser of s and t.

Now, (kem)k = k by () above. But k is monic, and k(emk) = k ◦ 1, so emk = 1. Now
se = te since e is an equaliser. Hence

s = semk = temk = t

as required. So L is indeed an initial object. �

So now by lemmas  and  together with Proposition .., we deduce that G has a left
adjoint iff, for each X ∈ C, (X ↓ G) has a weakly initial set, as required. �

L E C T U R E 18 · 2 0 / 1 1 / 0 2

. · Special adjoint functor theorem

 ..

Consider monics A X. Define a 6 b iff ∃c : A B such that

A
c

a

B

b

X



commutes. Observe that if there exists such a c, then it is unique (since b is monic) and
monic (since a is monic). Now, set a ∼ b iff a 6 b and b 6 a. The equivalence classes
under ∼ are called subobjects of X.

 ..

A category C is wellpowered iff for all X ∈ C, the collection of subobjects of X is a set;
equivalently, iff there exists a set of representing monics into X.

 ..

A collection B → D is cogenerating if whenever X
f

g
Y such that

∀Y b B, B ∈ B, bf = bg

then f = g.

 .. (   )

Suppose G : D C such that

• C is locally small;
• D is locally small, complete, well-powered and has a cogenerating set;

Then G has a left adjoint iff it preserves limits.



⇒ is clear; the point is ⇐. We aim to show that each (X ↓ G) has a weakly initial set, so
we can apply GAFT. That is, given any X ∈ C, we find a set A ⊆ (X ↓ G) such that for each
f : X GY ∈ (X ↓ G), there exists morphism

X
a

f

GA

Gk

GY

for some X a GA ∈ A. So we fix X and construct such a set A. Let B be a cogenerating set
in D.

 Put
QX =

∏

X
x
GB,

B∈B

B

with projections QX

qx
B (one for each X x GB). This is a small product since B is a set

and C is locally small.

QX

qx
qx′

B B′ . . .

 D is well-powered, so pick a set of representing monics into QX (i.e. one monic for each



isomorphism class). Write M = {representing monics A Q}.

A

m

A′

m′

. . .

QX

 Put

A = {X a GA such that ∃A m QX ∈ M} ⊆ (X ↓ G).

This is a set since M is a set and C is locally small. We claim that A is the desired weakly
initial set in (X ↓ G). So we need to show, given any f : X GY ∈ (X ↓ G), that there
exists

X
a

f

GA

Gt

GY

with X a GA ∈ A. So we fix X
f
GY and seek such a triangle.

 Put
PY =

∏

y : Y B
B∈B

B

with projections PY
py

B (one for each y : Y B.

PY
py

py′

B B′ . . .



X

f

h

a

GA
Gt

Gg

GY

Gd

GQX
Ge

GPY

(*)

• form Y PY, show monic;
• form QX PY;
• take pullback; G preserves pullbacks;
• form X GQX making outside commute;

• induce X a GA as required;
• a ∈ A since g monic.

 Induce T d PY by the universal property of the product PY:

Y

d

y y′

PY

py py′

B . . . B′



So we get unique d such that

∀y : Y B, py ◦ d = y ().

We show that d is monic; suppose we have
s

t
Y d PY with ds = dt. Then certainly,

for all y : Y B, pyds = pydt. So by (), for all y : Y B, ys = yt. Hence s = t since B is
cogenerating. Hence d is monic.

 Induce QX
e PY by the universal property of product PY. To use this, we need to find for

each Y y B a morphism QX B.

Now, we have a projection QX

qx
B for all x : X GB, and given any Y

y
B, we certainly

have a morphism

x = X
f
GY

Gy
GB

so we can use projections qGy◦f : QX B:

QX

e

qGy◦f qGy′
◦fPY

py py′

B . . . B′

inducing a unique e : QX PY such that

∀y : Y B, qGy◦f = py ◦ e ().

 Form the pullback

A
t

g

Y

d

QX
e

PY

Now d is monic, so g is monic; without loss of generality we can assume g is a representing
monic (since it must be isomorphic to one, so we can take an isomorphic pullback). G
preserves pullbacks so

GA

Gg

GY

Gd

GQX
Ge

GPY

is also a pullback.

 Induce X h GQX by the universal property of the product GQX. Since G preserves limits,
GQX is indeed a product,

GQX =
∏

X
x
GB

B∈B

GB



with projections GQX

Gqx
GB, one for each x : X GB, B ∈ B).

X

h

x x′GQX

Gqx Gqx′

GB . . . GB′

So we have unique h such that

∀x : X GB, Gqx ◦ h = x ().

 We now show that the outside of the diagram (*) commutes, using the universal property
of the product GPY. For each y : Y B, we have the following diagram:

X

f

h
k

GY

Gd

Gy

GQX
Ge

GqGy◦f

GPY ()

()
Gpy

GB

Now, the outside commutes by (), and the triangles commute as shown. So we need show
that Ge ◦ h = Gd ◦ f.



We use the universal property of the product GPY to induce a unique k such that for all
y : Y B, Gpy ◦ k = Gy ◦ f; then we show that Ge ◦ h and Gd ◦ f both satisfy this
condition.

 G preserves limits, so GPY is a product

GPY =
∏

y : Y B
B∈B

GB

with projections GPY
Gpy

GB. Now, for each y : Y B we have a morphism X
Gg◦f

GB:

X

k

Gy◦f Gy′◦fGPY

Gpy Gpy′

GB . . . GB′



inducing a unique k : X GPY such that

∀y : Y B, Gpy ◦ k = Gy ◦ f ().

 Ge ◦ h and Gd ◦ f both satisfy this condition, since for all y : Y B, we have

Gpy ◦ Gd ◦ f = G(py ◦ d) ◦ f
()
= Gy ◦ f

and
Gpy ◦ Ge ◦ h = G(py ◦ e) ◦ h

()
= GqGy◦f ◦ h

()
= Gy ◦ f.

Hence by the uniqueness of k, we haveGe◦h = Gd◦f and so the outside of (*) commutes.

 Induce X a GA by the universal property of pullback (as in (*)). Then X a GA ∈ A since

there exists monic A
g
QX ∈ M, and we have a commuting triangle

X
a

f

GA

Gt

GY

in (*) as required.

So A is indeed weakly initial, and hence (X ↓ G) has a weakly initial set for allX ∈ C. So finally,
since D is locally small and complete, we can apply GAFT to see that G has a left adjoint. �

L E C T U R E 19 · 2 2 / 1 1 / 0 2

 · Monads and comonads

. · Monads

Suppose we have an adjunction F a G : D C. Write T = GF : C C. We have natural
transformations

η : 1C GF = T ηX : X TX

GεF : GFGF GF

write as µ : T2 T µX : T
2X TX

We can think of η : 1C T as a “unit” and µ : T2 T as “multiplication”.

 ..

Under the above conditions, the following diagrams commute:

 Unit law:

T
Tη

1

T2

µ

T
ηT

1

T

i.e. ∀X

TX
TηX

1TX

T2X

µX

TX
ηTX

1TX

TX

commutes.



 Associativity:

T3
µT

Tµ

T2

µ

T2
µ T

i.e. ∀X

T3X
µTX

TµX

T2X

µX

T2X µX
TX

commutes.





GFX
GFηX

1GFX

GFGFX

GεFX

GFX
ηGFX

1GFX

GFX

commutes, since the left hand triangle is G of the triangle identity, and the right hand
triangle is the triangle identity of FX.



GFGFGFX
GεFGFX

GFGεFX

GFGFX

GεFX

GFGFX
GεFX

GFX

commutes as it is G of the naturality square of ε. �

 ..

A monad on a category C consists of a functor T : C C and natural transformations

η : 1 T “unit”

µ : T2 T “multiplication”

satisfying the unit and associativity laws as above.

 ..



()∗ : Set Set

A A∗

Where A∗ = { lists (a1, . . . , an) | n > 0, each ai ∈ A }. Put

ηA : A TA = A∗

a (a)

and

µA : A
∗∗ A

((a11, . . . , a1n1), . . . , (ak1, . . . , aknk
)) (a11, . . . , a1n1 , . . . , ak1, . . . , aknk

)

Then (()∗, η, µ) is a monad on Set - the “free monoid monad”.

 The identity functor is a monad.



 Let (M, e, ·) be a monoid. Then we have

M × : Set Set,

which we can equip with a monad structure. So set

ηX : X M × X

x (e, x)

µX : M × (M × X) M × X

(m1, (m2, x)) (m1m2, x)

Then the unit and associativity laws for the monad follow precisely from those for the
monoid.

 ..

Dually we have comonads, a functor L : D D with 1D

ε L δ L2 satisfying the dual of
the monad axioms.

. · Algebras for a monad

 ..

Let (T, η, µ) be a monad for C. An algebra for T consists of an object A ∈ C together with a

morphism TA θ A ∈ C such that the following diagrams commute:

A
ηA

1A

TA

θ

A

and

T2A
µA

Tθ

TA

θ

TA
θ

A.

A map of algebras (TA θ A) (TB
ϕ
B) is a morphism A

f
B such that

TA
Tf

θ

TB

ϕ

A
f

B

commutes. T-algebras and their maps form a category which we denote by CT.

 ..

 T = ()∗ : Set Set. A T-algebra is precisely a monoid. For an algebra is a set A and a

function A∗ θ A giving multiplication:

(a1, a2, . . . , an) a1a2 . . . an
() e

The monad axioms tell us that the multiplication on A must be associative.
 T = id. Then CT ∼= C.

 T = M × . T-algebras are sets with a monoid action: M × A θ A.



L E C T U R E 20 · 2 5 / 1 1 / 0 2

. · Free algebras

We can define a forgetful functor:

U : C
T

C

(TA θ A) A

A
f
B f

We may ask two obvious questions: doesU have a left adjoint; and does T arise naturally from
an adjunction?

 ..

U has a left adjoint F : C CT.



We construct F as follows:

• on objects, FA =



T2A

µA

TA


, the “free algebra on A”;

• on morphisms, F(A
f
B) =



T2A

µA

TA




Tf



T2B

µB

TB


.

We need to check three things: that FA and Ff satisfy the axioms for an algebra and a map
of algebras; that F is functorial; and that F is left adjoint to U. So:

 FA is a T-algebra:

TA
ηTA

1TA

T2A

µA

TA

T3A
µTA

TµA

T2A

µA

T2A µA
TA

by unit law for T by associativity law for T.

And Ff is a map of algebras:

T2A
T2f

µA

T2B

µB

TA
Tf

TB

by naturality of µ.

 The functoriality of F follows from that of T.

 We need to show that

C
T


FA,

TB
θ

B


 ∼= C(A, B)



naturally in A and B. We construct an isomorphism as follows:

a Given a map of algebras in the LHS

T2A
Tg

µA

TB

θ

TA g B,

we take A
ηA

TA B ∈ C(A, B). Naturality follows from that of η.

b Given a morphism A
f
B in the RHS, we construct an algebra map

T2A
T2f

µA

T2B

µB

Tθ
Tb

θ

TA
Tf

TB
θ

B

The left hand square commutes by naturality of µ; the right hand square commutes by
the second T-algebra axiom. Hence the outside square commutes, i.e. it is a map of
algebras.

c We show that these are mutually inverse:

• Starting with f : A B on the RHS, we get taken to θ◦Tf on the left hand side, and
thence to θ ◦ Tf ◦ ηA. So we need to show θ ◦ Tf ◦ ηA = f. We have:

A
ηA

f

TA
Tf

TB
θ

B

B

ηB
1B

The left hand square commutes by naturality of η and the right hand triangle by the
first T-algebra axiom. So we are done.

• Starting with g : TA B on the LHS, we go to g ◦ ηA and then to θ ◦ T(g ◦ ηA). This
time we have:

TA
TηA

1TA

T2A

µA

Tg
TB

θ
B

TA

g

where the left hand triangle commutes by the unit law for T, and the right hand
square commutes since g is a T-algebra map.

So we have our adjunction as required. �

 ..

The adjunction F a U gives rise to the monad (T, η, µ).





Recall that the adjunction (F, U, η′, ε′) gives rise to a monad (UF, η′, Uε′F). So we need to
check that (UF, η′, Uε′F) = (T, η, µ).

 It is easy to see that UF = T.

 Recall the adjunction (CT(FA, TB θ B) ∼= C(A, B) takes g to g ◦ ηA. So the unit η′A is given
by

1FA 1FA ◦ ηA = ηA

as required.

 Recall

C


A,U



TB

θ

B





 ∼= C

T


FA,

TB
θ

B




has f θ ◦ Tf. So the counit ε′X at X = TB θ B is given by

1UX θ ◦ T1 = θ

We need to show Uε′FA = µA. But FA =



T2A

µA

TA


 so Uε′FA = µA as required.

�

 · Monadicity

. · Introduction

 ..

Given a monad T : C C, we define a category AdjT with

• objects C ⊥

F

G

D inducing T;

• morphisms D1

D

G1

C

F1

F2

D2

G2

such that F2 = DF1 and G1 = G2D.

It is possible to show that in fact FT a UT is a terminal object in AdjT; so given F a G, we get
a unique morphism K in AdjGF:

D

!K

G

C

F

FT

CT

UT



L E C T U R E 21 · 2 7 / 1 1 / 0 2

. · Eilenberg-Moore Comparison Functor

 ..

Given an adjunction F a G : D C, the Eilenberg-Moore comparison function K is the
unique morphism K in AdjGF:

D

!K

G

C

F

FT

CT

UT

and is given by:

• on objects, KY =
GFGY

GεY

GY

• on morphisms, K(Y
f
Z) = GFGY

GFGf

GεY

GFGZ,

GεZ

GY
Gf

GZ

We need to check that K is in fact well defined; i.e. that KY is an algebra and that Kf is a map
of algebras. For KY we have

GY
ηGY

1GY

TGY

GεY

GY

which commutes by the first triangle identity, and

T2GY
µGY

TGεY

TGY

GεY

TGY
GεY

GY

=

GFGFGY
GεFGY

GFGεY

GFGY

GεY

GFGY
GεY

GY



which commutes by naturality of ε. Similarly for Kf, we have

GFGY
GFGf

GεY

GFGZ,

GεZ

GY
Gf

GZ

commuting by the naturality of ε. And clearly K is functorial (since G is), and the following
diagrams commute:

D

KC

F

FT

CT

and

D

K

G

C

CT

UT

 ..

An adjunction F a G is called monadic if the Eilenberg-Moore comparison functor is an
equivalence of categories. A functor G is called monadic if it has a left adjoint F with F a G
monadic. A category D with an understood forgetful functor D

U
C is called monadic over

C if U is monadic.

 ..

 Gp is monadic over Set;

 Vect is monadic over Set;

 Cpct Haus is monadic over Set;

 Top is not monadic over Set;

 Poset is not monadic over Set.

. · Monadicity theorems

Suppose we have an adjunction F a G : D C giving rise to a monad T = GF. Asking
whether F a G is monadic is essentially asking when D “looks like” CT, and when G “looks
like” UT. So what do CT and UT actually look like?



 Every algebra is a coequaliser of free algebras. Intuitively we can see this from “ordinary”
algebra, where every algebra isa quotient of a free algebra. So monadicity theorems are all
about existence, preservation, reflection and creation of special kinds of coequaliser.

 UT creates ‘UT-special’ coequalisers. In fact this property characterises monadicity. Hence
we arrive at our first attempt at a monadicity theorem:



G is monadic iff G creates G-special coequalisers.

Look more closely at (). We want D to be like CT. So certainly we would like every object in
D to be a coequaliser of free objects, i.e. objects of the form FX. This says that “the objects we
do have look like algebras”, i.e. that K is full and faithful.



We also need to show that we “have all of them”, i.e. that K is essentially surjective. So does K
hit all of the coequalisers? That is, can we find something in D which goes to each coequaliser?
Well, if D has all the “special coequalisers” and G preserves them, then we can lift along UT,

so seeing that K sends it to the right place. Hence we get



F a G is monadic iff D has and G preserves G-very-special coequalisers, and every object
of D is a coequaliser of free ones.

Can we avoid mentioning free objects in D? In fact, the coequaliser in question is
εFGY

FGεY

εY
;

and G of this is a coequaliser in C, so it suffices to prove that G reflects these. So K is full and
faithful iff G reflects G-very-special coequalisers. Hence



G is monadic iff D has and G preserves and reflects G-very-special-coequalisers.

. · Background on coequalisers

 ..

A split coequaliser is a fork A
f

g
B e C (i.e. ef = eg) with a splitting

A
f

g
B

e

t

C
s

such that es = 1C, ft = 1B and gt = se.

 ..

A split coequaliser is a coequaliser.



Suppose we have a fork A
f

g
B h D, say, so that hf = hg. We need to show that there

exists a unique C k D such that

A
f

g
B

e

h

C

!k

D

commutes. Now consider hs : C D. We have

hse = hgt

= hft

= h

so hs certainly makes the diagram commute. And suppose k is any other such; then

ke = h = hse ⇒ kes = hses ⇒ k = hs



so hs is the unique such. �

 ..

An absolute coequaliser is a coequaliser that is preserved as a coequaliser by any functor.

 ..

A split coequaliser is an absolute coequaliser.



A split coequaliser is defined entirely by a commutative diagram. �

 ..

For any T-algebra
TA

θ

A
, the following is a split coequaliser:

T2A
µA

Tθ
TA θ A



We exhibit a splitting

ηTA ηA

. For:

 θηA = 1A by the unit axiom for T-algebras.
 µAηTA = 1TA by the unit axiom for the monad T.
 Tθ ◦ ηTA = ηA ◦ θ by the naturality of η. �

 ..

• An absolute coequaliser pair is a pair
f

g
that has an absolute coequaliser.

• A G-absolute coequaliser pair is a pair f, g such that
Gf

Gg
has an absolute coequaliser.

• A split coequaliser pair is a pair
f

g
that has a split coequaliser.

• A G-split coequaliser pair is a pair f, g such that
Gf

Gg
has a split coequaliser.

In our earlier terminology, a “G-special coequaliser” is a coequaliser of aG-absolute-coequaliser
pair. and a “G-very-special coequaliser” is a coequaliser of a G-split-coequaliser pair.

 ..

FGFGY
εFGY

FGεY

FGY is a G-split coequaliser pair.



Recall KY =
GFGY

GεY

GY
is an algebra. Hence by previous result

GFGFGY
GεFGY

GFGεY

GFGY
GεY GY

is a split coequaliser. �



L E C T U R E 22 · 2 9 / 1 1 / 0 2

. · Beck’s Monadicity Theorem

 ..

Let F a G : D C. Then the following are equivalent:

 The adjunction is monadic;
 G creates coequalisers for all G-absolute-coequaliser pairs;
 D has coequalisers of all G-split coequaliser pairs, and G preserves and reflects them.

To prove this, we shall first prove a series of propositions.

 ..

UT : CT C creates coequalisers for all UT-absolute-coequaliser pairs.



A UT-absolute-coequaliser pair is a pair of morphisms A
f

g
B such that

TA
Tf

Tg

θ

TB

ϕ

A
f

g
B

“serially commutes”, and such that A
f

g
B has an absolute coequaliser A

f

g
B e C in C.

We aim to show that there is a unique lift to a fork

TA
Tf

Tg

θ

TB

ϕ

Te
TC

ψ

A
f

g
B

e
C

in CT, and that it is a coequaliser in CT.

 Induce unique ψ by the universal property of coequaliser; the bottom fork is an absolute
coequaliser, hence preserved by T; so the top fork is also a coequaliser. Now,

e ◦ ϕ ◦ Tf = e ◦ f ◦ θ = e ◦ g ◦ θ = e ◦ ϕ ◦ Tg

so this induces a unique ψ making the right hand square commute.

 We show that TC
ψ
C is an algebra. For the first axiom, consider the diagram:

B
e

1B

ηB

C

1C

ηC

TB

ϕ

Te
TC

ψ

B e C



We need to show the right hand triangle commutes. But everything else commutes, and
e is epic (since a coequaliser). Hence the right hand triangle commutes. Similarly, for the
second axiom, consider:

T2B
T2e

Tϕ

ηB

T2C
µC

Tψ

TB

ϕ

Te
TC

ψTB
Te

ϕ

TC
ψ

B
e

C

We need to show the right hand face commutes. But everything else commutes and T2e is
epic (since a coequaliser); hence the right hand square does commute.

 It remains to check that the given fork is a coequaliser in CT. Consider:

TA
Tf

Tg

θ

TB

Th

ϕ

Te
TC

ψ

Th

TY

α

A
f

g
B

e

h

C

!h

Y

where we induce the unique h by the bottom coequaliser. Then since Te is epic, the right
hand square commutes, exhibiting h as a unique factorisation in CT as required. �

 ..

For any algebra TA θ A, the following diagram is a coequaliser in CT:

T3A
TµA

T2θ

µTA

T2A

µA

Tθ
TA

θ

T2A
µA

Tθ
TA

θ
A



Observe that this diagram serially commutes, i.e. it is a fork. Also note that UT of it is an
absolute coequaliser (by Prop ..). SinceUT creates and in particular reflects coequalisers
for UT-absolute coequaliser pairs, this fork must itself be a coequaliser. �



 ..

K is full and faithful iff the following diagram is a coequaliser for all A ∈ D:

FGFGA
εFGA

FGεA

FGA
εA A



The right hand side says: given any m : FGA B such that m ◦ εFGA = m ◦ FGεA, there
exists a unique f : A B such that f ◦ εA = m. The left hand side says:

K : D(A, B) C
T(KA, KB)

f Gf

is a bijection for all A, B ∈ D (recall Kf = Gf). That is, given any h : KA KB, there is a
unique f : A B such that h = Gf. But:



A map h : KA KB is precisely a map GA h GB such that h ◦ εFGA = h ◦ FGεA.



Such an h makes

GFGA
GFh

GεA

GFGB

GεB

GA
h

GB

commute; i.e. h ◦ GεA = GεB ◦ GFH. Now:

GFGA
GεA GA h GB

FGFGA
FGεA FGA h GB

along the leftish leg, and

GFGA
1GFGA GFGA GFh GFGB

GεB GB

FGFGA
εFGA FGA Fh FGB

εB B

along the rightish one; but εB ◦ Fh = h, so the condition becomes h ◦ εFGA = h ◦
FGεA. �

But now, under adjunction, h : GA GB becomes h : FGA B, and Gf : GA GB
becomes f◦εA : FGA B. Hence, the left hand side statement becomes: given any h : FGA

B such that h ◦ εFGA = h ◦ FGεA, there exists unique f : A B such that h = f ◦ εA,
which is precisely the right hand side statement. �

 ..

K is full and faithful if G reflects coequalisers for all G-split coequaliser pairs.



G of FGFGA
εFGA

FGεA

FGA is a split coequaliser by ... So if G reflects such coequalisers,

then this fork is a coequaliser. And hence K is full and faithful by the previous result. �



 ..

If D has and G preserves coequalisers for all G-split coequaliser pairs, then K is essentially
surjective.



Given any algebra TA θ A, we seek Y ∈ D such that KY ∼= TA θ A in CT. Recall that

T3A
TµA

T2θ

µTA

T2A

µA

Tθ
TA

θ

T2A
µA

Tθ
TA

θ
A

()

is a coequaliser in CT, and that the left hand square is a UT-split coequaliser pair (since the
bottom is a split coequaliser pair by ..).

Also by .., FGFA
εFA

Fθ
FA is a G-split coequaliser pair, and K of it is the pair in () (since

K ◦ UT = G).

So it has a coequaliser in D,

FGFA
εFA

Fθ
FA h Y ()

say. We show that K of this coequaliser is a coequaliser of the same parallel pair we started
with. Recall the following diagram commutes:

D
K

G

CT

UT

C

G preserves coequalisers of G-split coequaliser pairs; so G of () is a coequaliser in C. K
of the pair is a UT-split-coequaliser pair; UT creates coequalisers for such. So K of () is a
coequaliser. Hence it must be isomorphic to (); i.e. KY ∼= (TA

θ
A). �

We are now in a position to prove Beck’s Monadicity Theorem.

 ( ..)

 ⇒ : Since UT creates coequalisers for UT-absolute coequaliser pairs, and K is an equiva-
lence of categories, so the same holds for G.

 ⇒ : Immediate from definitions; a split coequaliser is an absolute coequaliser, and “cre-
ates” implies “reflects”; so G preserves and reflects split coequalisers.
Since G creates split coequalisers, D has them. And this was of getting coequalisers in D

does give all the coequalisers we want, so by construction all these are taken to coequalisers
in C.

 ⇒ : by Prop .. and ...

�



L E C T U R E 23 · 0 1 / 1 2 / 0 2

 · Bicategories

. · Definitions

 ..

A category C is given by:

• DATA:

– a collection obC of objects;
– for each pair of objects, a collection of morphisms C(A, B);
– for each A, B, C ∈ obC, a function

cABC : C(B, C) × C(A, B) C(A, C)

(g, f) g ◦ f;

– for each A ∈ C, a function

iA : C(A,A)

∗ idA .

• AXIOMS:

– associativity — (hg)f = h(gf);
– unit — f ◦ 1 = f = 1 ◦ f.

 ..

A bicategory B is given by

• DATA:

– a collection obB of -cells;
– for each pair A, B of -cells, a category B(A, B), with

∗ objects being -cells A B;

∗ morphisms being -cells A
f

g

B ;

∗ composition A

f

α

h

β
g B , β ◦ α.

– composition: for each A, B, C ∈ B, a functor

cABC : B(B, C)×B(A, B) B(A, C)
(g , f) gf


 B

g

g′

β C , A
f

f′

α B


 A

gf

g′f′

β∗α C



– identities: for each A ∈ B, a functor

IA : 1 B(A,A)

∗ A
IA
A

– associativity: for all composable f, g, h ∈ B, invertible -cells

afgh : (hg)f ∼ h(gf)

natural in f, g and h.
– unit: for all f ∈ B(A, B):

rf : f ◦ IA ∼ f

lf : IB ◦ f ∼ f

natural in f.

• AXIOMS:

– the associativity pentagon commutes:

((kh)g)f a∗1

a

(k(hg))f

a

(kh)(gf)

a

k((hg)f)

1∗a

k(h(gf))

– the unit triangle commutes:

(gI)f a

r∗1

g(If)

1∗l

gf

 ..

 If a, r and l are identities, we have a strict -category; for example Cat.

 A bicategory with one object is called a monoidal category.
 Set has the structure of a monoidal category.

-object bicategory ↔ monoidal category
-cells ↔ objects
-cells ↔ morphisms

composition of -cells ↔ “tensor product” of objects A ⊗ B

In Set we take A ⊗ B = A × B the usual Cartesian product. Then a : A × (B × C) ∼

A× (B×C); and we take I to be an object such that A× I ∼= A ∼= I×A; i.e. any one-object
set.

 There is a bicategory of rings, bimodules and bimodule homomorphisms.
 Any category can be regarded as a bicategory with trivial -cells.



L E C T U R E 24 · 0 5 / 1 2 / 0 2

. · Slightly higher-dimensional categories

 ..

A monoidal category is a category C equipped with

• a functor ⊗ : C × C C;
• an object I ∈ obC

together with natural isomorphisms

aABC : (A ⊗ B) ⊗ C ∼ A ⊗ (B ⊗ C)

lA : I ⊗ A ∼ A

rA : A ⊗ I ∼ A

such that the following diagrams commute:

((A ⊗ B) ⊗ C) ⊗ D
a⊗1

a

(A ⊗ (B ⊗ C)) ⊗ D

a

(A ⊗ B) ⊗ (C ⊗ D)

a

A ⊗ ((B ⊗ C) ⊗ D)

1⊗a

A ⊗ (B ⊗ (C ⊗ D))

(A ⊗ I) ⊗ B a

r⊗1

A ⊗ (I ⊗ B)

1⊗l

A ⊗ B

 ..

Given any category C we can form a monoidal category from it:

• objects are finite lists (x1, . . . , xn) of objects of C;

• morphisms (x1, . . . , xm)
(f1,...,fm)

(y1, . . . , ym) with fi : xi yi.

I is the empty list, and ⊗ is concatenation of lists. This is known as the “free strict monoidal
category on C”.

We can draw morphisms as

x1,

f1

x2,

f2

. . . , xm

fm

y1, y2, . . . , ym

We have seen other examples of monoidal categories; for instance, Set with A ⊗ B = A × B.
However, in this case we could have equally well chosen to use B × A, since we have A × B ∼=
B × A — a symmetry



 ..

A symmetry for a monoidal category (C,⊗, I, a, r, l) is given by isomorphisms

γAB : A ⊗ B ∼ B ⊗ A

natural in A and B such that the following diagrams commute:

(A ⊗ B) ⊗ C
γ⊗1

a A ⊗ (B ⊗ C)
γ

(B ⊗ A) ⊗ C

a

(B ⊗ C) ⊗ A

a

B ⊗ (A ⊗ C)
1⊗γ

B ⊗ (C ⊗ A)

A ⊗ I
γ

r

I ⊗ A
l

A

A ⊗ B
γ

1

B ⊗ A

γ

A ⊗ B

We call such a category a symmetric monoidal category.

 ..

Let C be the category with objects the natural numbers and morphisms given by

C(n,m) =

{
Sn n = m

∅ n 6= m

So we can draw morphisms as

5

5

and we can compose them. Now, we can make C into a symmetric monodial category by
defining ⊗ on objects to be addition (a strictly associative map!), I to be 0, and γnm given
by

n m



We define ⊗ on morphisms to be juxtaposition of permutations; for example

4

⊗

2

=

6

And our axioms say

A B C

=

A B C

and

A B

=

A B

which is ‘pictorially obvious’. In fact, any two morphisms that are ‘pictorially the same’ are
the same.

 ..

Just as for monoidal categories, we can form the “free strictly associative symmetrical
monoidal category” on a category C. The objects are finite lists, and the morphisms are
as in the previous example, but labelled by morphisms of C; for example

x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4

f
1

f
2

f
3

f
4

Note that we do not distinguish over- and under-crossings. But we could; so we would have
diagrams that looked like

That is, instead of our symmetry being

A B

it is

A B



Note that one of the axioms for a symmetry does not now hold; we still have

A B C

=

A B C

but

A B

6=

A B

 ..

A braided monoidal category is a monoidal category equipped with a braiding; that is, iso-
morphisms

cAB : A ⊗ B → B ⊗ A

natural in A and B, and denoted by

A B

, such that

A B C

=

A B C

and

A B C

=

A B C

Note that we have another braiding

c
′
AB = c

−1
BA i.e.

A B

but in general c 6= c
′; if the two are equal, then we in fact have a symmetry.

Note that in the symmetric case we did not have to specify both of the above axioms, as one
was the inverse of the other.



As before, we can form a “free braided monoidal category” on C by labelling strands. Then
to check that diagrams commute we check each strand and check that the underlying
braids are the same.



